Application of WIEN2k code for computing NMR shielding

Robert Laskowski

rolask@ihpc.a-star.edu.sg

Institute of High Performance Computing Singapore

Agency for Science, Technology and Research

NMR Shielding

• Shielding of applied B-field leads to material dependent changes in transition energy

NMR Hamiltonian

perturbation

Spin and orbital component of NMR shielding

Orbital Component of NMR Shielding

The induced magnetic field (B_{ind}) is derived from induced current (j_{ind}) using Biot-Savart law:

$$\boldsymbol{B}_{ind}(\boldsymbol{r}) = \frac{1}{c} \int d^3 \boldsymbol{r}' \boldsymbol{j}(\boldsymbol{r}') \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

in DFT current density is given by:

$$\boldsymbol{j}(\boldsymbol{r}') = \sum_{o} \langle \Psi_{o} | \boldsymbol{J}(\boldsymbol{r}') | \Psi_{o} \rangle$$

Introducing magnetic filed

Replace p in H and j(r) operators with:

$$p \rightarrow p + A(r')$$

A(r) in the symmetric gauge

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{1}{2} \boldsymbol{B} \times (\boldsymbol{r} - \boldsymbol{d})$$

Hamiltonian in the presence of the magnetic field

$$H = \frac{1}{2} \left(\boldsymbol{p} + \frac{1}{c} \boldsymbol{A}(\boldsymbol{r}) \right)^2 + V(\boldsymbol{r})$$

for gauge origin **d**=0

$$H = \frac{1}{2} \boldsymbol{p}^2 + V(\boldsymbol{r}) + \frac{1}{2c} \boldsymbol{L} \cdot \boldsymbol{B} + \frac{1}{8c^2} (\boldsymbol{B} \times \boldsymbol{r})^2$$

Current operator in the presence of magnetic field

$$\boldsymbol{J}(\boldsymbol{r}) = \boldsymbol{J}^{(0)}(\boldsymbol{r}) + \boldsymbol{J}^{(1)}(\boldsymbol{r})$$

paramagnetic current operator:

$$\boldsymbol{J}^{(0)}(\boldsymbol{r}) = -\frac{\boldsymbol{p} |\boldsymbol{r}\rangle\langle \boldsymbol{r} | + |\boldsymbol{r}\rangle\langle \boldsymbol{r} | \boldsymbol{p}}{2}$$

diamagnetic current operator:

$$\boldsymbol{J}^{(1)}(\boldsymbol{r}) = -\frac{\boldsymbol{B} \times \boldsymbol{r}}{2 \, \boldsymbol{c}} \, | \, \boldsymbol{r} \,\rangle \langle \, \boldsymbol{r} \, |$$

Linear response formula for induced current

$$|\Psi_{o}\rangle = |\Psi_{o}^{(0)}\rangle + |\Psi_{o}^{(1)}\rangle$$

first order perturbation of the occupied states $|\Psi_{o}^{(1)}\rangle = \sum_{e} |\Psi_{e}^{(0)}\rangle \frac{\langle \Psi_{e}^{(0)} | H^{(1)} | \Psi_{o}^{(0)} \rangle}{\epsilon - \epsilon_{e}}$ $A(\mathbf{r}) \text{ in the symmetric gauge} \qquad H^{(1)} = \frac{1}{2c} \mathbf{L} \cdot \mathbf{B}$

$$\boldsymbol{j}(\boldsymbol{r}') = \sum_{o} \langle \Psi_{o} | \boldsymbol{J}(\boldsymbol{r}') | \Psi_{o} \rangle$$
$$\boldsymbol{j}_{ind}(\boldsymbol{r}') = \sum_{o} \Re \left[\langle \Psi_{o}^{(1)} | \boldsymbol{J}^{(0)}(\boldsymbol{r}') | \Psi_{o}^{(0)} \rangle \right] - \frac{\boldsymbol{B} \times \boldsymbol{r}'}{2c} \rho(\boldsymbol{r}')$$

paramagnetic

diamagnetic

Generalized f-sum rule

$$\rho(\mathbf{r}')\mathbf{B} \times \mathbf{r}' = -\sum_{o} \langle \Psi_o^{(0)} | \frac{1}{i} [\mathbf{B} \times \mathbf{r}' \cdot \mathbf{r}, \mathbf{J}^{(0)}(\mathbf{r}')] | \Psi_o^{(0)} \rangle]$$

$$\boldsymbol{j}_{ind}(\boldsymbol{r}') = \sum_{o} \Re \left[\left\langle \Psi_{o}^{(0)} \middle| \boldsymbol{J}^{(0)}(\boldsymbol{r}') \middle| \widetilde{\Psi}_{o}^{(1)} \right\rangle \right]$$

$$\begin{split} |\tilde{\Psi}_{o}^{(1)}\rangle = \sum_{e} |\Psi_{e}^{(0)}\rangle \frac{\langle \Psi_{e}^{(0)} | \left[(\mathbf{r} - \mathbf{r}') \times \mathbf{p} \cdot \mathbf{B} \right] |\Psi_{o}^{(0)}\rangle}{\epsilon_{o} - \epsilon_{e}} \end{split}$$

Considering infinite periodic structure

$$\mathbf{r} \cdot \hat{\mathbf{u}}_i = \lim_{q \to 0} \frac{1}{2q} \left(e^{iq\hat{\mathbf{u}}_i \cdot \mathbf{r}} - e^{-iq\hat{\mathbf{u}}_i \cdot \mathbf{r}} \right)$$

- Calculations are done using small q vector
- Figenfunctions have to be computed on kmeshes shifted by +/- q

Details in: PRB 85, 035132 (2012)

APW (wien2k) basis

LAPW plane waves

$$\begin{split} \phi_{\mathbf{k},\mathbf{G}}^{LAPW}(\mathbf{r}) &= \begin{cases} \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{G}+\mathbf{k})\cdot\mathbf{r}}, & \mathbf{r} \in I \\ \sum_{l,m} \left[A_{l,m}^{\alpha,\mathbf{k}+\mathbf{G}} u_{l}^{\alpha}(r,E_{l}) \\ + B_{l,m}^{\alpha,\mathbf{k}+\mathbf{G}} \dot{u}_{l}^{\alpha}(r,E_{l}) \right] Y_{l,m}(\hat{r}), & \mathbf{r} \in S_{\alpha} \\ \hline \mathbf{local \ orbitals} \\ \phi_{l,m,\mathbf{k}}^{LO,\alpha,i}(\mathbf{r}) &= \begin{cases} 0, & \mathbf{r} \in I \\ \left[A_{l,m}^{i,\alpha,\mathbf{k}} u_{l}^{\alpha}(r,E_{l}) + B_{l,m}^{i,\alpha,\mathbf{k}} \dot{u}_{l}^{\alpha}(r,E_{l}) \\ + C_{l,m}^{i,\alpha,\mathbf{k}} u_{l}^{\alpha,i}(r,E_{l}) \right] Y_{l,m}(\hat{r}), & \mathbf{r} \in S_{\alpha} \end{cases} \end{split}$$

wave function

$$\Psi_{n,\mathbf{k}}(\mathbf{r}) = \begin{cases} \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} C_G^n e^{i(\mathbf{G}+\mathbf{k})\cdot\mathbf{r}}, & \mathbf{r} \in I\\ \sum_{l,m} W_{l,m}^{n,\alpha,\mathbf{k}}(r) Y_{l,m}(\hat{r}), & \mathbf{r} \in S_\alpha \end{cases}$$

APW, fine tuning

- APW basis is perfect only for states with eigen energy close to the linearization energy
 - to remedy this we include extended set of local orbitals (NMR LO)

$$\phi_{l,m,\mathbf{k}}^{LO,\alpha,i}(\mathbf{r}) = \begin{cases} 0, & \mathbf{r} \in I \\ \left[A_{l,m}^{i,\alpha,\mathbf{k}} u_l^{\alpha}(r, E_l) + B_{l,m}^{i,\alpha,\mathbf{k}} \dot{u}_l^{\alpha}(r, E_l) + C_{l,m}^{i,\alpha,\mathbf{k}} u_l^{\alpha,i}(r, E_l^i)\right] Y_{l,m}(\hat{r}), & \mathbf{r} \in S_{\alpha} \end{cases}$$

- NMR LO has node at the sphere boundary
- number of nodes increase by one in subsequent LO

- APW does not include directly radial derivative of u(r), which results in slow convergence with respect of number of NMR LO
 - Adding to the basis r*du/dr radial functions helps (DUC)

$$\begin{aligned} \xi_{l,k}(r,\tilde{\epsilon}) &= \begin{cases} r\frac{d}{dr}u_{l+1}(r,\tilde{\epsilon}) + (l+2)u_{l+1}(r,\tilde{\epsilon}), & k = 1\\ r\frac{d}{dr}u_{l-1}(r,\tilde{\epsilon}) - (l-1)u_{l-1}(r,\tilde{\epsilon}), & k = 2 \end{cases}\\ \tilde{u}_{l,k}(r) &= \xi_{l,k}(r,\tilde{\epsilon}) - \sum_{i} b_{l,k,i}u_{l,i}(r), \\ |\phi_{lm,k}\rangle &= \tilde{u}_{l,k}(r)Y_{lm} \\ \mathcal{G}(\epsilon_{i}) &= \sum_{e} \frac{|\Psi_{e}^{(0)}\rangle\langle\Psi_{e}^{(0)}|}{\epsilon_{i} - \epsilon_{e}} + \sum_{k} \frac{|\phi_{k}\rangle\langle\phi_{k}|}{\langle\phi_{k}|(\epsilon_{i} - H)|\phi_{k}\rangle} \end{aligned}$$

Details in: PRB 89, 014402 (2014)

Induced current in LAPW

$$\mathbf{B}_{\text{ind}}(\mathbf{R}) = \frac{1}{c} \int d^3 r \mathbf{j}_{\text{ind}}(\mathbf{r}) \times \frac{\mathbf{R} - \mathbf{r}}{|\mathbf{r} - \mathbf{R}|^3}$$

Integration of the induced current

modification of Weinert (M. Weinert, J. Math. Phys. 22, 11 (1981).) method is used to integrate the induced current

$$\mathbf{j}_{\text{ind}}(\mathbf{r}) = \begin{cases} \sum_{\mathbf{G}} \left(\mathbf{j}_{\mathbf{G}} + \tilde{\mathbf{j}}_{\mathbf{G}}^{s} \right) e^{i\mathbf{G}\cdot\mathbf{r}}, & \mathbf{r} \in \Omega, \\ \sum_{lm} \left[\mathbf{j}_{lm}^{\alpha,c}(r) - \tilde{\mathbf{j}}_{\alpha}(\mathbf{r}) \right] Y_{lm}(\hat{r}), & \mathbf{r} \in S_{\alpha} \end{cases}$$

$$\begin{split} \tilde{\mathbf{j}}_{\alpha}^{s}(\mathbf{r}) &= \sum_{lm} \mathbf{Q}_{lm}^{\alpha} Y_{lm}(\hat{\mathbf{r}}) \sum_{\eta}^{n} a_{\eta} r^{\nu_{\eta}}, \quad \mathbf{r} \in S_{\alpha} \\ \tilde{\mathbf{j}}_{\mathbf{G}}^{s} &= \frac{4\pi}{\Omega} \sum_{lm,\alpha} \frac{(-i)^{l} (2l+2n+3)!!}{(2l+1)!!} \\ &\times \frac{j_{l+n+1} (GR_{\alpha})}{(GR_{\alpha})^{n+1}} \mathbf{q}_{lm}^{\alpha} e^{-i\mathbf{G}\xi_{\alpha}} Y_{lm}(\hat{\mathbf{G}}) \end{split}$$

Integration of the induced current

Sphere centered on nucleus shielding is computed

$$\mathbf{B}_{\text{ind}}^{S,\alpha}(0) = -\frac{1}{c} \int_{\alpha} d^3 r \mathbf{j}_{\text{ind}}(\mathbf{r}) \times \frac{\mathbf{\hat{r}}}{|\mathbf{r}|^2}$$
$$\mathbf{B}_{\text{ind}}^{S,\alpha}(0) = \frac{1}{c} \sqrt{\frac{4\pi}{3}} \sum_{lm} \left[\int_{0}^{R} dr \, \mathbf{j}_{\text{ind}}^{q}(\mathbf{r}) \right] \left[\frac{1}{\sqrt{2}} (G_{l01}^{m01} - G_{l01}^{m0-1}) + \frac{i}{\sqrt{2}} (G_{l01}^{m01} + G_{l01}^{m0-1}), G_{l01}^{m00} \right].$$

Whole unit-cell volume

$$\mathbf{B}_{\text{ind}}^{\text{PW}}(\mathbf{G}) = \frac{4\pi}{c} \frac{i\mathbf{G} \times \left(\mathbf{j}_{\mathbf{G}} + \tilde{\mathbf{j}}_{\mathbf{G}}^{s}\right)}{G^{2}} \qquad \mathbf{B}_{\text{ind}}^{\text{PW}}(\mathbf{G} = 0) = \frac{8\pi}{3} \overleftrightarrow{\chi} \mathbf{B}$$

Core contribution

• Core states are covered by a separate eigenvalue problem, contribution accounts for spherical charge:

$$\mathbf{j}_{\text{ind}}(\mathbf{r}') = -\frac{1}{2c}\rho_{\text{core}}(\mathbf{r}')\mathbf{B}\times\mathbf{r}'$$

• Due to the separation, correction is needed (CC):

$$\begin{split} |\Psi_{o}^{(1)}\rangle &= \sum_{e} |\Psi_{e}^{(0)}\rangle \frac{\langle \Psi_{e}^{(0)} | H^{(1)} | \Psi_{o}^{(0)} \rangle}{\epsilon_{o} - \epsilon_{e}} \\ &+ \sum_{\text{core}} |\Psi_{\text{core}}^{(0)}\rangle \frac{\langle \Psi_{\text{core}}^{(0)} | H^{(1)} | \Psi_{o}^{(0)} \rangle}{\epsilon_{o} - \epsilon_{\text{core}}} \end{split}$$

Benchmark: spherical Ar atom

Test of the solution for spherically symmetric Ar atom

The convergence with respect to number of NMR LO, with and without basis extension

How to run the code

- 1) run SCF calculation
- 2) prepare *case.in1_nmr* (add NMR LO): *x_nmr -mode in1*
- 3) run <u>x_nmr</u>

Master script: *x_nmr* [options]

x_nmr -h prints help
x_nmr -p run parallel using .machines

case.in1_nmr

WFFIL EF=.533144859350 (WFFIL, WFPRI, ENFIL, SUPWF) 7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT 0.30 19 0 (GLOBAL E-PARAMETER WITH n 0 -0.58576 0.002 CONT 1 0 4.80000 0.000 CONT 1 0 36.60000 0.000 CONT 1 0 66.66000 0.000 CONT 1 0 104.26000 0.000 CONT 1 0 149.26000 0.000 CONT 1 0 201.50000 0.000 CONT 1

•••

x_nmr (work flow)

output

- case.output_"mode"
- final results (shielding tensor, trace, anisotropy ..)

case.output_integ

 :NMRTOT001 ATOM:
 Ba1 1 NMR(total/ppm) Sigma-ISO = 5384.00
 Sigma_xx = 5474.82
 Sigma_yy = 5385.93
 Sigma_zz = 5291.24

 :NMRASY001 ATOM:
 Ba1 1 NMR(total/ppm) ANISO (delta-sigma) = -139.13
 ASYM (eta) = 0.958
 SPAN = 183.57
 SKEW =-0.032

 :NMRTOT002 ATOM:
 S1 2 NMR(total/ppm) Sigma-ISO = 111.31
 Sigma_xx = 85.34
 Sigma_yy = 107.93
 Sigma_zz = 140.67

 :NMRASY002 ATOM:
 S1 2 NMR(total/ppm) ANISO (delta-sigma) = 44.03
 ASYM (eta) = 0.770
 SPAN = 55.33
 SKEW = 0.183

x_nmr - important options

x_nmr -mode *mode _id*

x_nmr -initonly

x_nmr -noinit

x_nmr -p

x_nmr -scratch scratch

x_nmr -h

executes particular mode

only lapw1, lapw2, lcore

only current, integ

Where does it come from? - orbital part

$$|\Psi_{o}^{(1)}\rangle = \sum_{e} |\Psi_{e}^{(0)}\rangle \frac{\langle \Psi_{e}^{(0)} | H^{(1)} | \Psi_{o}^{(0)}\rangle}{\epsilon_{o} - \epsilon_{e}}$$

$$H^{(1)} = \frac{1}{2c} \boldsymbol{L} \cdot \boldsymbol{B}$$

- Coupling between occupied and empty band
- Directly related to bands character and the band gap

Shielding in Fluorides

Schematic diagram representing major couplings contributing to NMR shielding

 $\Delta\,$ varies between 5 eV for CsF to 20 eV for NaF

PRB 85, 245117 (2012)

Shielding in Fluorides

NMR shielding at fluorine nucleus in alkali fluoride series for different couplings

Schematic diagram representing major couplings contributing to NMR shielding

PRB 85, 245117 (2012)

Slope problem

Spin Component of NMR Shielding

NMR, spin component

contact term

Workflow

• converge regular SCF (spin polarized)

 converge SCF with magnetic field applied to spin only, use large number of k-points

case.inorb

- x_lapw orb -up x_lapw kgen runsp_lapw -cc 0.000001 -p <mark>x_lapw lapwdm</mark>
- look in case.scf for :HFF (multiply by 10⁵/B_{ext}) for shielding in ppm
- case.scfdm for dipolar contribution

NMR shielding in simple metals

Gallides, theory vs. experiment

Where does it come from? - spin part

- common sense interpretation leads to paramagnetic response (negative)
- S-PDOS at Fermi level matters

Gallides, contact term

BaGa₂ and SrGa₂ show positive contact term !!!

Al and Sc shielding in ScTT'Al

J. Phys. Chem. C 121, 12398 (2017)

Y NMR shielding in intermetallic Yttrium compounds

Why contact term is sometimes positive?

- It happens for low s-PDOS end of the diagrams
- Wave-function around nucleus is different for spin up and down states

Radial function changes with energy

$$m(\mathbf{r}) = \psi_{\uparrow}(\mathbf{r})\psi_{\uparrow}^{*}(\mathbf{r}) - \psi_{\downarrow}(\mathbf{r})\psi_{\downarrow}^{*}(\mathbf{r})$$
$$u_{\sigma}(B_{\text{ext}}, r) = u^{0}(r) + \dot{u}^{0}(r)\Delta\epsilon_{\sigma}(B_{\text{ext}})$$
$$\mathbf{m}(r) = -\mu_{B}B[u^{0}(r)\dot{u}^{0}(r)]$$

- Both u(r) and du/dr are positive close to nucleus leads to diamagnetic contribution to contact term
- it is small, up to 100ppm
- Also seen for non-zero band gap

Only paramagnetic polarization

SCF effects, MGa_x

$$\sigma_{c,SCF} = 2622 \, ppm$$

• Also large SCF effects coming from the spike

$$\sigma_{c,SCF} = 1010 \, ppm$$

(

$$\sigma_{c,SCF} = 415 \, ppm$$

SCF effects, ScTT'Al

• Contact term contribution from core and semicore states !!!

100 T external magnetic field

Spin component - dipolar term

Thank you for your attention