26th Wien2k Workshop, Vienna, August 14th, 2019

Introduction to Dynamical Mean-Field Theory

Jan M. Tomczak Institute of Solid State Physics

O Correlated electrons—what are they, and why are they interesting?

O Dynamical Mean-Field Theory (DMFT)

 \bigcirc a cartoon

 \odot a few equations

○ applications that (nowadays) are simple

 \odot DMFT for the Kondo insulator $\rm Ce_{3}Bi_{4}Pt_{3}$

O Correlated electrons—what are they, and why are they interesting?

O Dynamical Mean-Field Theory (DMFT)

 \bigcirc a cartoon

 \odot a few equations

○ applications that (nowadays) are simple

O DMFT for the Kondo insulator Ce3Bi4Pt3

"Correlations": a not so serious analogy

low density \rightarrow nearly independent people

intermediate density

Correlations: a question of orbitals

extended orbitals: stronger bonding

- diamond: sp³ covalent bonding
- orbitals with l = n-1 most localized
 - in particular: 3d, 4f
 - participate less in bonding
 - more atomic-like characteristics

 $\rightarrow V_{e-e} / W$ not small \rightarrow <u>competition</u>

$$\bar{r} = (5.29 \text{pm}) \frac{n^2}{Z} \left[\frac{3}{2} - \frac{l(l-1)}{2n^2} \right]$$

[UC Davis ChemWiki]

Correlated electrons—phase diagrams

competing energy scales \rightarrow sensitivity to external stimuli

0:1 →

O Correlated electrons—what are they, and why are they interesting?

O Dynamical Mean-Field Theory (DMFT)

 \bigcirc a cartoon

 \odot a few equations

○ applications that (nowadays) are simple

O DMFT for the Kondo insulator Ce3Bi4Pt3

Correlated electrons & DMFT in 1 slide

k

Correlated electrons & DMFT in 1 slide

cf. classical mean-field

	Ising model
Hamiltonian	$H = -\sum_{ij} J_{ij} S_i S_j - h \sum_i S_i$
local observable	$m_i = \langle S_i \rangle$
single-site reference system	$H^{eff} = -h^{eff}S$
Weiss field	h^{eff}
self-consistency	$h^{eff} \stackrel{!}{=} \sum_{j} J_{ij} m_j + h$
solution	$\tanh(\beta h^{eff}[m]) = m$

cf. classical mean-field

	Ising model	Hubbard model
Hamiltonian	$H = -\sum_{ij} J_{ij} S_i S_j - h \sum_i S_i$	$H = -t \sum_{ij\sigma} \mathbf{c}_{i\sigma}^{\dagger} \mathbf{c}_{j\sigma} + \mathbf{U} \sum_{i} n_{i\uparrow} n_{i\downarrow}$
local observable	$m_i = \langle S_i \rangle$	$G_{ii}(\tau) = -\langle T_{\tau} \mathbf{c}_i(\tau) \mathbf{c}_i^{\dagger}(0) \rangle$
single-site reference system	$H^{eff} = -h^{eff}S$	$\begin{split} \mathcal{S} &= \int d\tau \mathbf{c}^{\dagger} \left(-\frac{\partial}{\partial \tau} + H_{loc}^{kin} \right) \mathbf{c} + \mathbf{U} d\tau n_{\uparrow} n_{\downarrow} \\ &+ \int d\tau \int d\tau' \mathbf{c}^{\dagger}(\tau) \Delta(\tau - \tau') \mathbf{c} \ (\tau') \end{split}$
Weiss field	h^{eff}	$\Delta(\omega)$
self-consistency	$h^{eff} \stackrel{!}{=} \sum_{j} J_{ij} m_j + h$	$G_{imp}(\omega) \stackrel{!}{=} G_{ii}(\omega)$
solution	$\tanh(\beta h^{eff}[m]) = m$	effective Anderson impurity model

binding energy

DMFT for the Hubbard model

Limits in which DMFT is exact

- non-interacting limit $U = 0 \longrightarrow \Sigma = 0$
- atomic limit $t = 0 \longrightarrow \Delta = 0$

→ non-perturbative: all irreducible diagrams
→ "interpolates" between weak and strong coupling

• infinite dimensions/connectivity

[Metzner & Vollhardt, PRL 62, 324 (1989)] [Müller-Hartmann, Z. Phys. B 74, 507 (1989)]

$$H = -\sum_{\mathbf{R}\mathbf{R}'\sigma} t_{\mathbf{R},\mathbf{R}'} \mathbf{c}_{\mathbf{R}\sigma}^{\dagger} \mathbf{c}_{\mathbf{R}'\sigma} + \mathbf{U} \sum_{\mathbf{R}} n_{\mathbf{R}\uparrow} n_{\mathbf{R}\downarrow}$$

[G. Kotliar & D. Vollhardt, Physics Today 3, 53 (2004)]

Breakdown of band-theory: YTiO₃

DFT: YTiO₃ a metal

reality: a (paramagnetic!) insulator

YTiO₃: a Mott insulator

Outline

○ DMFT for the Kondo insulator Ce₃Bi₄Pt₃

Band theory "U = T = 0"

Band theory "U = T = 0"

DMFT "U>0": spectral properties

- U=5.5, J=0.68eV, full Coulomb
- ctqmc, charge self-consistency [Haule et al, PRB 2010]

DMFT "U>0": spectral properties

[JMT arXiv:1904.01346]

≈T_κ T=58K 0.2 0.1 Energy [eV] 0 -0.1 -0.2 Η Ρ Η Ν Ρ Γ Г

- U=5.5, J=0.68eV, full Coulomb
- ctqmc, charge self-consistency [Haule et al, PRB 2010]

- incoherence-to-coherence crossover
- gap renormalization (m^{*}/m_{DFT} = $1/Z \approx 10$) \checkmark

- Н Ν Р **DFT+DMFT**
 - $\Delta(\omega)$ $\omega \in [-10:10] eV$
- U=5.5, J=0.68eV, full Coulomb
- ctqmc, charge self-consistency [Haule et al, PRB 2010]

- incoherence-to-coherence crossover
- gap renormalization (m^{*}/m_{DFT} = $1/Z \approx 10$) \checkmark

DMFT: charge & spin observables

- metallization for $T \ll \Delta/k_B$ through incoherent weight \checkmark
- transfers of spectral weight over $\Omega \gtrsim 300 \mathrm{meV} \gg \Delta$

[JMT arXiv:1904.01346]

Summary

- many-body renormalizations: m*, lifetimes
- excited states
- finite temperatures

introductions to DMFT

• A. Georges: AIP Conf Proc 715, 3 (2004) [arXiv:cond-mat/0403123]

 $H(k)+\Sigma(\omega)$

Juelich School Lecture Notes: <u>www.cond-mat.de/events/correl18/</u>

public codes (with wien2k interfaces, e.g., wien2wannier)

- w2dynamics [Wuerzburg+Wien]
- DFT+Embedded DMFT Functional [K. Haule, Rutgers] \rightarrow Ce3Bi4Pt3
- TRIQS [O. Parcollet et al, Paris]
- ALPS [Switzerland], ...

[Phys.: Condens. Matter 30, 183001 (2018)]