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Few words about Special Theory of Relativity 

Light 

Composed of photons (no mass) 
Speed of light = constant 

c  ≈ 137 au 

Atomic units: 
ħ = me = e = 1 



Light Matter 

Composed of photons (no mass) 
Speed of light = constant 

c  ≈ 137 au 

Atomic units: 
ħ = me = e = 1 

Speed of 
matter mass 

v = f(mass) 

mass = f(v) 

Composed of atoms (mass) 

Few words about Special Theory of Relativity 



Light Matter 

Composed of photons (no mass) 

Lorentz Factor (measure of the relativistic effects)  

Speed of light = constant 

c  ≈ 137 au 

Atomic units: 
ħ = me = e = 1 

Speed of 
matter mass 

v = f(mass) 

mass = f(v) 

Momentum: p = γmv = Mv 

Total energy: 

Relativistic mass: M = γm (m: rest mass) 
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Composed of atoms (mass) 

E2 = p2c2 + m2c4 
E = γmc2 = Mc2 

Few words about Special Theory of Relativity 
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« Non-relativistic » 
particle: γ = 1 

1s electron of Au atom = relativistic particle 

Definition of a relativistic particle (Bohr model) 
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Me(1s-Au) = 1.22me 



Relativistic effects 

Relativistic increase in the mass of an electron with its velocity (when ve → c) 

1) The mass-velocity correction 

+Ze 



Relativistic increase in the mass of an electron with its velocity (when ve → c) 

1) The mass-velocity correction 

It has no classical relativistic analogue 
Due to small and irregular motions of an electron about its mean position (Zitterbewegung*) 

2) The Darwin term 

+Ze 

*Analysis of Erwin Schrödinger of the wave packet solutions of the Dirac equation for relativistic 
electrons in free space:The interference between positive and negative energy states produces what 
appears to be a fluctuation (at the speed of light) of the position of an electron around the median. 

Relativistic effects 



Relativistic increase in the mass of an electron with its velocity (when ve → c) 

1) The mass-velocity correction 

It has no classical relativistic analogue 
Due to small and irregular motions of an electron about its mean position (Zitterbewegung) 

2) The Darwin term 

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field 
induced by its own orbital motion (l) 

3) The spin-orbit coupling 

+Ze 
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Relativistic increase in the mass of an electron with its velocity (when ve → c) 

1) The mass-velocity correction 

It has no classical relativistic analogue 
Due to small and irregular motions of an electron about its mean position (Zitterbewegung) 

2) The Darwin term 

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field 
induced by its own orbital motion (l) 

3) The spin-orbit coupling 

The change of the electrostatic potential induced by relativity is an indirect effect of the 
core electrons on the valence electrons 

4) Indirect relativistic effect 

+Zeffe 

Relativistic effects 



One electron radial Schrödinger equation 
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Atomic units: 
ħ = me = e = 1 
1/(4 πε0) = 1 

c = 1/ α ≈ 137 au 
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In a spherically 
symmetric potential 

Atomic units: 
ħ = me = e = 1 
1/(4 πε0) = 1 

c = 1/ α ≈ 137 au 
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One electron radial Schrödinger equation 
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One electron radial Schrödinger equation 



Dirac Hamiltonian: a brief description 

Dirac relativistic Hamiltonian provides a quantum mechanical description 
of electrons, consistent with the theory of special relativity. 

Ψ=Ψ εDH with 

E2 = p2c2 + m2c4 

VcmpcH eD ++⋅= 2βα
!!



Dirac relativistic Hamiltonian provides a quantum mechanical description 
of electrons, consistent with the theory of special relativity. 
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Momentum 
operator Rest mass 
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potential 

VcmpcH eD ++⋅= 2βα
!!

(2×2) unit and 
zero matrices 

Ψ=Ψ εDH with 

E2 = p2c2 + m2c4 

Dirac Hamiltonian: a brief description 



Dirac equation: HD and Ψ are 4-dimensional 

Φ and χ are time-independent two-component spinors describing the spatial 
and spin-1/2 degrees of freedom 

Ψ is a four-component single-particle wave function that describes spin-1/2 
particles.   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

4

3

2

1

4

3

2

1

ψ

ψ

ψ

ψ

ε

ψ

ψ

ψ

ψ

DH

spin up 

spin down 

Large 
components (Φ) 

Small 
components (χ) 

In case of electrons: 

⎟ ⎟ 
⎠ 

⎞ 
⎜ ⎜ 
⎝ 

⎛ Φ 
= 

χ 
ψ 

Leads to a set of coupled equations for Φ and χ: 

( ) ( )φεχσ   2cmVpc e−−=⋅
!

( ) ( )χεφσ   2cmVpc e+−=⋅
!

factor  
∝ 1/(mec2) 



Dirac equation: HD and Ψ are 4-dimensional 

For a free particle (i.e. V = 0): 
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Antiparticles: up & down 

Solution in the slow 
particle limit (p=0) 

Non-relativistic limit 
decouples Ψ1 from Ψ2 

and Ψ3 from Ψ4 



For a free particle (i.e. V = 0): 

( )
( )

( )
( )

0

0ˆˆˆ
0ˆˆˆ
ˆˆˆ0
ˆˆˆ0

4

3

2

1

2

2

2

2

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Ψ

Ψ

Ψ

Ψ

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++−

+−−−

+−−

−−−−

cmppip
cmpipp

ppipcm
pippcm

ezyz

eyzz

zyze

yxze

ε

ε

ε

ε

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛ ↑

0
0
0,2

φ

cme
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
↓

0
0

0

,2
φ

cme

Particles: up & down 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

− ↑

0

0
0

,2
χ

cme
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

↓χ

0
0
0

,2cme

Antiparticles: up & down 

Solution in the slow 
particle limit (p=0) 

Non-relativistic limit 
decouples Ψ1 from Ψ2 

and Ψ3 from Ψ4 

For a spherical potential V(r): 
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Dirac equation: HD and Ψ are 4-dimensional 



Dirac equation in a spherical potential 

The resulting equations for the radial functions (gnκ and fnκ) are simplified 
if we define: 

2' cme−= εε ( ) ( )
22

'
c
rVmrM ee

−
+=
ε

Energy: Radially varying mass: 

For a spherical potential V(r): 



The resulting equations for the radial functions (gnκ and fnκ) are simplified 
if we define: 

2' cme−= εε ( ) ( )
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Energy: Radially varying mass: 

Then the coupled equations can be written in the form of the radial eq.: 

Darwin 
term 

Spin-orbit 
coupling 
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For a spherical potential V(r): 

Mass-velocity effect 
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Dirac equation in a spherical potential 



The resulting equations for the radial functions (gnκ and fnκ) are simplified 
if we define: 
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Then the coupled equations can be written in the form of the radial eq.: 

and Darwin 
term 

Spin-orbit 
coupling 

( ) ( )11 +=+ llκκNote that: 

For a spherical potential V(r): 

Due to spin-orbit coupling, Ψ is not an eigenfunction 
of spin (s) and angular orbital moment (l).  
Instead the good quantum numbers are j and κ 

No approximation 
have been made 

so far 

Dirac equation in a spherical potential 



Scalar relativistic approximation 

Approximation that the spin-orbit term is small  
⇒ neglect SOC in radial functions (and treat it by perturbation theory) 
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Dirac equation in a spherical potential 



Scalar relativistic approximation 

Approximation that the spin-orbit term is small  
⇒ neglect SOC in radial functions (and treat it by perturbation theory) 
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No SOC ⇒ Approximate radial functions: 

The four-component wave function is now written as: 

Inclusion of the spin-orbit coupling in “second 
variation” (on the large component only) ( ) 
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Dirac equation in a spherical potential 



Relativistic effects in a solid 

For a molecule or a solid: 

Relativistic effects originate deep inside the core. 

It is then sufficient to solve the relativistic equations in a spherical 
atomic geometry (inside the atomic spheres of WIEN2k).  

Justify an implementation of the relativistic effects only inside the 
muffin-tin atomic spheres 



SOC: Spin orbit coupling 

Implementation in WIEN2k 

Atomic sphere (RMT) Region 

Core 
electrons 

Valence 
electrons 

« Fully » 
relativistic 

Spin-compensated 
Dirac equation 

Scalar relativistic 
(no SOC) 

Possibility to add SOC 
(2nd variational) 



Implementation in WIEN2k 

Interstitial Region 

Valence 
electrons 

Not relativistic 

SOC: Spin orbit coupling 

Atomic sphere (RMT) Region 

Core 
electrons 

Valence 
electrons 

« Fully » 
relativistic 

Spin-compensated 
Dirac equation 

Scalar relativistic 
(no SOC) 

Possibility to add SOC 
(2nd variational) 



Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons
Core

electrons

« Fully »
relativistic

Spin-compensated
Dirac equation

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons
Core

electrons

« Fully »
relativistic

Spin-compensated
Dirac equation

    17 0.00  0   
1,-1,2     ( n,κ,occup) 
2,-1,2     ( n,κ,occup) 
2, 1,2     ( n,κ,occup) 
2,-2,4     ( n,κ,occup) 
3,-1,2     ( n,κ,occup) 
3, 1,2     ( n,κ,occup) 
3,-2,4     ( n,κ,occup) 
3, 2,4     ( n,κ,occup) 
3,-3,6     ( n,κ,occup) 
4,-1,2     ( n,κ,occup) 
4, 1,2     ( n,κ,occup) 
4,-2,4     ( n,κ,occup) 
4, 2,4     ( n,κ,occup) 
4,-3,6     ( n,κ,occup) 
5,-1,2     ( n,κ,occup) 
4, 3,6     ( n,κ,occup) 
4,-4,8     ( n,κ,occup) 
 0 

case.inc for Au atom 

s 0 1/2 -1 2 

p 1 3/2 1/2 1 -2 2 4 

d 2 5/2 3/2 2 -3 4 6 

f 3 7/2 5/2 3 -4 6 8 

l s=+1 

j=l+s/2 κ=-s(j+1/2) occupation 

s=-1 s=+1 s=-1 s=+1 s=-1 

For spin-polarized potential, 
spin up and spin down are calculated 
separately, the density is averaged 
according to the occupation number 

specified in case.inc file. 

Core states: fully occupied  
→ spin-compensated Dirac 

equation (include SOC) 

Implementation in WIEN2k: core electrons 



 
1s1/2 → 
2s1/2 

2p1/2 → 
2p3/2 → 
3s1/2                
3p1/2                
3p3/2                
3d3/2 →                
3d5/2 →                
4s1/2                
4p1/2                
4p3/2                
4d3/2                
4d5/2                
5s1/2                
4f5/2 → 
4f7/2 →                
  

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons
Core

electrons

« Fully »
relativistic

Spin-compensated
Dirac equation

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region
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Core
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« Fully »
relativistic

Spin-compensated
Dirac equation

    17 0.00  0   
1,-1,2     ( n,κ,occup) 
2,-1,2     ( n,κ,occup) 
2, 1,2     ( n,κ,occup) 
2,-2,4     ( n,κ,occup) 
3,-1,2     ( n,κ,occup) 
3, 1,2     ( n,κ,occup) 
3,-2,4     ( n,κ,occup) 
3, 2,4     ( n,κ,occup) 
3,-3,6     ( n,κ,occup) 
4,-1,2     ( n,κ,occup) 
4, 1,2     ( n,κ,occup) 
4,-2,4     ( n,κ,occup) 
4, 2,4     ( n,κ,occup) 
4,-3,6     ( n,κ,occup) 
5,-1,2     ( n,κ,occup) 
4, 3,6     ( n,κ,occup) 
4,-4,8     ( n,κ,occup) 
 0 

case.inc for Au atom 

s 0 1/2 -1 2 

p 1 3/2 1/2 1 -2 2 4 

d 2 5/2 3/2 2 -3 4 6 

f 3 7/2 5/2 3 -4 6 8 

l s=+1 

j=l+s/2 κ=-s(j+1/2) occupation 

s=-1 s=+1 s=-1 s=+1 s=-1 

For spin-polarized potential, 
spin up and spin down are calculated 
separately, the density is averaged 
according to the occupation number 

specified in case.inc file. 

Core states: fully occupied  
→ spin-compensated Dirac 

equation (include SOC) 

Implementation in WIEN2k: core electrons 



Valence electrons INSIDE atomic spheres are treated 
within scalar relativistic approximation [1] if RELA 

is specified in case.struct file (by default). 

[1] Koelling and Harmon, J. Phys. C (1977) 

Title 
F   LATTICE,NONEQUIV.ATOMS:  1 225 Fm-3m 
MODE OF CALC=RELA unit=bohr 
  7.670000  7.670000  7.670000 90.000000 90.000000 90.000000 
ATOM   1: X=0.00000000 Y=0.00000000 Z=0.00000000 
          MULT= 1          ISPLIT= 2 
Au1        NPT=  781  R0=0.00000500 RMT=    2.6000   Z: 79.0 
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000 
                     0.0000000 1.0000000 0.0000000 
                     0.0000000 0.0000000 1.0000000 
  48      NUMBER OF SYMMETRY OPERATIONS 

♦ no κ dependency of the wave function, (n,l,s) are still good quantum numbers 
♦ all relativistic effects are included except SOC 
♦ small component enters normalization and calculation of charge inside spheres 
♦ augmentation with large component only 
♦ SOC can be included in « second variation » 

Valence electrons in interstitial region 
are treated classically 

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region
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electrons
Valence 
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Scalar relativistic
(no SOC)

Possibility to add SOC
(2nd variational)
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Implementation in WIEN2k: valence electrons 
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SOC is added in a second variation (lapwso): 

- First diagonalization (lapw1): 
- Second diagonalization (lapwso): 

1111 Ψ=Ψ εH
( ) Ψ=Ψ+ εSOHH1

The second equation is expanded in the basis of 
first eigenvectors (Ψ1) 

( ) ΨΨ=ΨΨΨΨ+∑ ji
N

i

i
SO

jj
ij H 11111 εεδ

sum include both up/down spin states 
→ N is much smaller than the basis size in lapw1 

Implementation in WIEN2k: valence electrons 
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electrons
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Scalar relativistic
(no SOC)

Possibility to add SOC
(2nd variational)

SOC is added in a second variation (lapwso): 

- First diagonalization (lapw1): 
- Second diagonalization (lapwso): 

1111 Ψ=Ψ εH
( ) Ψ=Ψ+ εSOHH1

The second equation is expanded in the basis of 
first eigenvectors (Ψ1) 

( ) ΨΨ=ΨΨΨΨ+∑ ji
N

i

i
SO

jj
ij H 11111 εεδ

sum include both up/down spin states 
→ N is much smaller than the basis size in lapw1 

♦ SOC is active only inside atomic spheres, only spherical potential (VMT) is taken into 
account, in the polarized case spin up and down parts are averaged.  

♦ Eigenstates are not pure spin states, SOC mixes up and down spin states  

♦ Off-diagonal term of the spin-density matrix is ignored. It means that in each SCF cycle 
the magnetization is projected on the chosen direction (from case.inso) 

VMT: Muffin-tin potential (spherically symmetric) 

Implementation in WIEN2k: valence electrons 



Controlling spin-orbit coupling in WIEN2k 

♦ Do a regular scalar-relativistic “scf” calculation  

♦ save_lapw 

♦ initso_lapw 

WFFIL 
 4  1  0                      llmax,ipr,kpot 
 -10.0000   1.50000           emin,emax (output energy window) 
   0.  0.  1.                 direction of magnetization (lattice vectors) 
 NX                           number of atoms for which RLO is added 
 NX1   -4.97      0.0005      atom number,e-lo,de (case.in1), repeat NX times 
 0 0 0 0 0                    number of atoms for which SO is switch off; atoms 

• case.inso: 

• case.in1(c): 
(…) 
 2    0.30      0.005 CONT 1  
 0    0.30      0.000 CONT 1  
K-VECTORS FROM UNIT:4   -9.0       4.5    65   emin/emax/nband          

• symmetso (for spin-polarized calculations only) 

♦ run(sp)_lapw -so -so switch specifies that scf cycles will include SOC  



The w2web interface is helping you 

Non-spin polarized case 

Controlling spin-orbit coupling in WIEN2k 



The w2web interface is helping you 

Spin polarized case 

Controlling spin-orbit coupling in WIEN2k 



Relativistic effects in the solid: Illustration 

LDA overbinding (7%) 

No difference NREL/SREL 

Bulk modulus: 
-  NREL: 131.4 GPa 
-  SREL: 131.5 GPa 
-  Exp.: 130 GPa 

hcp-Be 
Z = 4 
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LDA overbinding (7%) 

No difference NREL/SREL 

Bulk modulus: 
-  NREL: 131.4 GPa 
-  SREL: 131.5 GPa 
-  Exp.: 130 GPa 

LDA overbinding (2%) 

Clear difference NREL/SREL 

Bulk modulus: 
-  NREL: 344 GPa 
-  SREL: 447 GPa 
-  Exp.: 462 GPa 

hcp-Be 
Z = 4 

hcp-Os 
Z = 76 

Relativistic effects in the solid: Illustration 

SREL 

NREL 

exp 



175 180 185 190 195 200 205 210 ♦ Scalar-relativistic (SREL): 

-  LDA overbinding (2%) 
-  Bulk modulus: 447 GPa 

+ spin-orbit coupling (SREL+SO): 
-  LDA overbinding (1%) 
-  Bulk modulus: 436 GPa 

⇒ Exp. Bulk modulus: 462 GPa 

hcp-Be 
Z = 4 

hcp-Os 
Z = 76 

SREL 

NREL 

exp 
SREL+SO 

Relativistic effects in the solid: Illustration 



Relativistic increase in the mass of an electron with its velocity (when ve → c) 

1) The mass-velocity correction 

It has no classical relativistic analogue 
Due to small and irregular motions of an electron about its mean position (Zitterbewegung) 

2) The Darwin term 

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field 
induced by its own orbital motion (l) 

3) The spin-orbit coupling 

The change of the electrostatic potential induced by relativity is an indirect effect of the 
core electrons on the valence electrons 

4) Indirect relativistic effect 

+Zeffe 

Relativistic effects 
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(1) Relativistic orbital contraction 
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AND 

In Au atom, the relativistic mass (M) of the 
1s electron is 22% larger than 
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(1) Relativistic orbital contraction 
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Direct relativistic effect (mass enhancement) →  contraction of 0.46% only 

However, the relativistic contraction of the 6s orbital is large (>20%)   

(1) Relativistic orbital contraction 
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(2) Spin-Orbit splitting of p states 
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(2) Spin-Orbit splitting of p states 
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♦ p1/2 (κ=1): markedly different behavior than non-relativistic p-state  

gκ=1 is non-zero at nucleus 
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♦ p1/2 (κ=1): markedly different behavior than non-relativistic p-state  
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(3) Orbital expansion: Au(d) states 

Higher l-quantum number states expand due to better shielding of nucleus charge from 
contracted s-states 
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(3) Orbital expansion: Au(d) states 



Higher l-quantum number states expand due to better shielding of nucleus charge from 
contracted s-states 
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Higher l-quantum number states expand due to better shielding of nucleus charge from 
contracted s-states 
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+Zeff1e +Zeff2e 

-e 

Zeff2 = Z- σ(REL) 
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Indirect relativistic effect 

Zeff1 > Zeff2 
Zeff1 = Z- σ(NREL) 

(3) Orbital expansion: Au(d) states 
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Atomic spectra of gold 

Orbital contraction 

SO splitting 

SO splitting 
Orbital expansion 



Ag – Au: the differences (DOS & optical prop.) 

Ag Au 



Relativistic semicore states: p1/2 orbitals 

Electronic structure of fcc Th, SOC with 6p1/2 local orbital 

J.Kuneš, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001) 

6p1/2 

6p1/2 

6p3/2 

6p3/2 

Energy vs. basis size DOS with and without p1/2 

p1/2 included 

p1/2 not included 



SOC in magnetic systems 

SOC couples magnetic moment to the lattice 

Symmetry operations acts in real and spin space  

♦direction of the exchange field matters (input in case.inso) 

♦number of symmetry operations may be reduced (reflections act differently on 
spins than on positions) 

♦time inversion is not symmetry operation (do not add an inversion for klist) 

♦initso_lapw (must be executed) detects new symmetry setting 

[100] [010] [001] [110] 

1 

mx 

my 

2z 

A A A A 

A B B - 

B A B - 
B B A B 

Direction of magnetization 



Relativity in WIEN2k: Summary 

WIEN2k offers several levels of treating relativity: 
♦non-relativistic: select NREL in case.struct (not recommended) 

♦standard: fully-relativistic core, scalar-relativistic valence 

mass-velocity and Darwin s-shift, no spin-orbit interaction 

♦”fully”-relativistic: 

adding SO in “second variation” (using previous eigenstates as basis) 

adding p1/2 LOs to increase accuracy (caution!!!) 

x lapw1   (increase E-max for more eigenvalues, to have 
x lapwso   basis for lapwso) 

x lapw2 –so -c  SO ALWAYS needs complex lapw2 version 

♦Non-magnetic systems: 

SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c. 

♦Magnetic systems: 

symmetso dedects proper symmetry and rewrites case.struct/in*/clm* 



Magnetic coupling  
&  

Magnetic anisotropy 

23rd WIEN2k Workshop	
Hamilton – 2016	

Xavier Rocquefelte	
Institut des Sciences Chimiques de Rennes 

(UMR 6226)  Université de Rennes 1, FRANCE	



Estimation of magnetic coupling parameters 

Estimation of J can be done by mapping energy differences onto the 
general Heisenberg Spin Hamiltonian:  

Ĥ = Ĥ0 + Jij
!
Si.

i< j
∑

!
Sj

Jij: spin exchange 
parameter between the 

spin sites i and j 

Jij > 0 ⇒ AFM 
Jij < 0 ⇒ FM 

Long-range order 
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Estimation of magnetic coupling parameters 

Estimation of J can be done by mapping energy differences onto the 
general Heisenberg Spin Hamiltonian:  

Ĥ = Ĥ0 + Jij
!
Si.

i< j
∑

!
Sj

Jij: spin exchange 
parameter between the 

spin sites i and j 

Jij > 0 ⇒ AFM 
Jij < 0 ⇒ FM 

Long-range order 

Eα = α H α = E0 +S
2 Jij
i< j
∑ σ iσ j

S: Spin hold by the 
magnetic center 

σi = ±1 (up or down 
spin) 

Example of a spin-half dimer (S = ½) 
To estimate the J12 value, 2 total energy calculations are needed: 

EFM = E0 +
1
4
J12 EAFM = E0 +−

1
4
J12

J12 = 2 EFM −EAFM( )
σ1 = +1  σ2 = +1  σ1 = +1  σ2 = -1  



Estimation of magnetic coupling parameters 

Illustration with NiO: NaCl structure, A-type AFM along [111] 

Ni2+ -> S = 1 

Eα = α H α = E0 +S
2 Jij
i< j
∑ σ iσ j
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2 inequivalent Ni sites in the rhombohedral 
unit cell (S.G. R-3m) 

J: magnetic coupling defined 
by Ni1-O-Ni2 path (angle : 180°) 

12J / unit cell 

2J / f.u. 



Estimation of magnetic coupling parameters 

Illustration with NiO: NaCl structure, A-type AFM along [111] 

Ni2+ -> S = 1 

Eα = α H α = E0 +S
2 Jij
i< j
∑ σ iσ j

2 inequivalent Ni sites in the rhombohedral 
unit cell (S.G. R-3m) 

J: magnetic coupling defined 
by Ni1-O-Ni2 path (angle : 180°) 

12J / unit cell 

2J / f.u. 

J = (EFM −EAFM ) / 4
EFM = E0 + 2J EAFM = E0 − 2J



Estimation of the magnetic anisotropy 

♦ Do a regular scalar-relativistic “scf” calculation  

♦ save_lapw 

♦ initso_lapw 

WFFIL 
 4  1  0                      llmax,ipr,kpot 
 -10.0000   1.50000           emin,emax (output energy window) 
   0.  0.  1.                 direction of magnetization (lattice vectors) 
 NX                           number of atoms for which RLO is added 
 NX1   -4.97      0.0005      atom number,e-lo,de (case.in1), repeat NX times 
 0 0 0 0 0                    number of atoms for which SO is switch off; atoms 

• case.inso: 

• case.in1(c): 
(…) 
 2    0.30      0.005 CONT 1  
 0    0.30      0.000 CONT 1  
K-VECTORS FROM UNIT:4   -9.0       4.5    65   emin/emax/nband          

• symmetso (for spin-polarized calculations only) 

♦ run(sp)_lapw -so -so switch specifies that scf cycles will include SOC  



Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO 

Allows to define the 
magnetization 

easy and hard axes 

Here we have considered the 
following expression: 

 
MAE = E[u v w] – E[easy axis] 

[1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm. 4, 2511 (2013) 

Estimation of the magnetic anisotropy 

MAE 
(μeV) 

Magnetization axis 

Hard 
axis 

Easy 
axis 

Hard 
axis 

E[uvw] is the energy deduced 
from spin-orbit calculations with 
the magnetization along the [uvw] 

crystallographic direction 



Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO 

E[uvw] is the energy deduced 
from spin-orbit calculations with 
the magnetization along the [uvw] 

crystallographic direction 

[101]

[-101]

[10-1]

[0-10][-10-1]
[010]

[1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm. 4, 2511 (2013) 

Estimation of the magnetic anisotropy 

Allows to define the 
magnetization 

easy and hard axes 

Here we have considered the 
following expression: 

 
MAE = E[u v w] – E[easy axis] 
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Pauli Hamiltonian for magnetic systems 
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Pauli Hamiltonian for magnetic systems 

( ) ...
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+⋅+⋅++∇−= lBV
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!!!!"
σζσµ

2x2 matrix in spin space, due to Pauli spin operators 

Wave function is a 2-component vector (spinor) – It corresponds to 
the large components of the dirac wave function (small components 
are neglected) 
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Pauli Hamiltonian for magnetic systems 
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2x2 matrix in spin space, due to Pauli spin operators 

Effective electrostatic 
potential 

Effective magnetic 
field 

xcHexteff VVVV ++= xcexteff BBB +=

Exchange-correlation 
potential 

Exchange-correlation 
field 



Pauli Hamiltonian for magnetic systems 

( ) ...
2

2
2

+⋅+⋅++∇−= lBV
m

H effBeff
e

P

!!!!"
σζσµ

2x2 matrix in spin space, due to Pauli spin operators 

Effective electrostatic 
potential 

Effective magnetic 
field 

Spin-orbit 
coupling 

dr
dV
rcMe

1
2 22

2!
=ζ

xcHexteff VVVV ++= xcexteff BBB +=

Exchange-correlation 
potential 

Exchange-correlation 
field 

Many-body effects which are defined 
within DFT LDA or GGA 



Exchange and correlation 

From DFT exchange correlation energy: 

( )( ) ( ) ( )[ ] 3 ,  , drmrrmrE hom
xcxc

!!
ρερρ ∫=

Local function of  the electronic density (ρ) and the magnetic moment (m) 

Definition of Vxc and Bxc (functional derivatives): 

( )
ρ
ρ

∂

∂
=

mEV xc
xc

!, ( )
m
mEB xc

xc !
!!

∂

∂
=

,ρ

LDA expression for Vxc and Bxc: 

( ) ( )
ρ
ρε

ρρε
∂

∂
+=

mmV
hom
xchom

xcxc

!
! ,, ( )m

m
mB

hom
xc

xc ˆ,
∂

∂
=

!! ρε
ρ

Bxc is parallel to the magnetization density vector (m) ^ 



Non-collinear magnetism 

Direction of magnetization vary in space, thus spin-orbit term is present 
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Collinear magnetism 

Magnetization in z-direction / spin-orbit is not present 
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♦ Collinear magnetic moments 

♦ Solutions are pure spinors 
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Non-magnetic calculation 

No magnetization present, Bx = By = Bz = 0 and no spin-orbit coupling 
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♦ Solutions are pure spinors 

♦ Degenerate spin solutions  



Magnetism and WIEN2k 

Wien2k can only handle collinear or non-magnetic cases 

run_lapw script:  

x lapw0 
x lapw1 
x lapw2 
x lcore 
x mixer 

non-magnetic case 

m = n↑ – n↓ = 0 

run_lapw script:  

x lapw0 
x lapw1 –up 
x lapw1 -dn 
x lapw2 –up 
x lapw2 -dn 
x lcore –up 
x lcore -dn 
x mixer 

magnetic case 

m = n↑ – n↓ ≠ 0 
DOS 

EF 

DOS 

EF 



Magnetism and WIEN2k 

Spin-polarized calculations 

♦ runsp_lapw script (unconstrained magnetic calc.) 

♦ runfsm_lapw -m value (constrained moment calc.) 

♦ runafm_lapw (constrained anti-ferromagnetic calculation) 

♦ spin-orbit coupling can be included in second variational step 

♦ never mix polarized and non-polarized calculations in one case 
directory !!! 



Non-collinear magnetism 

♦ code based on Wien2k (available for Wien2k users) 

In case of non-collinear spin arrangements WIENncm (WIEN2k 
clone) has to be used: 

♦ structure and usage philosophy similar to Wien2k 
♦ independent source tree, independent installation 

WIENncm properties: 

♦ real and spin symmetry (simplifies SCF, less k-points) 

♦ constrained or unconstrained calculations (optimizes magnetic moments) 

♦ SOC in first variational step, LDA+U 

♦ Spin spirals 



Non-collinear magnetism 

For non-collinear magnetic systems, both spin channels have to be 
considered simultaneously 

runncm_lapw script:  

xncm lapw0 
xncm lapw1 
xncm lapw2 
xncm lcore 
xncm mixer 

Relation between spin density 
matrix and magnetization 

 
mz = n↑↑ – n↓↓ ≠ 0 

 
mx = ½(n↑↓ + n↓↑) ≠ 0 

 
my = i½(n↑↓ - n↓↑) ≠ 0 

 

DOS 

EF 



WienNCM: Spin spirals 

Transverse spin wave 

qR !
!
⋅=α

 α 

R 
( ) ( )( )θθ cos , sinsin , cos nnn RqRqmm

!!!!!
⋅⋅=

♦ spin-spiral is defined by a vector q given in reciprocal space and an angle  θ 
between magnetic moment and rotation axis.  

♦ Rotation axis is arbitrary (no SOC) – fixed as z-axis in WIENNCM 

⇒ Translational symmetry is lost ! 

⇒ But WIENncm is using the generalized Bloch theorem. The calculation of spin 
waves only requires one unit cell for even incommensurate modulation q vector.  



WienNCM: Usage 

1. Generate the atomic and magnetic structures 

2. Run initncm (initialization script) 

3. Run the NCM calculation: 

♦ Create atomic structure 

♦ Create magnetic structure 

See utility programs: ncmsymmetry, polarangles, … 

♦ xncm (WIENncm version of x script) 

♦ runncm (WIENncm version of run script) 

More information on the manual (Robert Laskowski) 
 

rolask@theochem.tuwien.ac.at 


