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I. LDA TOTAL ENERGY

Total energy as given by Singh [1] eq. (2.1.3) is
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where:

T
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is the kinetic energy,
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is Coulomb electron-nuclei interaction,
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is the Hartree energy
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is the nuclei-nuclei Coulomb interaction, and

E

XC

is the exchange correlation energy

Corresponding Kohn-Sham equation is (Singh eqs.

2.1.6-2.1.9)
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To express the kinetic energy T

S;0

in (1) using

P

occ

�

i

,

equation (3) is multiplied from left by '

�
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, integrated over

~r and summed over occupied orbitals. The result is:
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This expression is then substituted to (1). Taking into

account that
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which is the desired expression (Singh 2.2.2). The tilde

upon E

0

means that T

S;0

was replaced by

P

occ

�

i

. The

above derivation assumes the non-spin polarized calcula-

tion, but the generalization for the spin-polarized prob-

lems is straightforward and obvious.

II. LDA+U TOTAL ENERGY

First we assume (general case will be treated after-

wards) that:

� Density matrix is diagonal.

� U is the same for all Coulomb interaction (U

ij

�

U) and J is the same for all exchange interaction

(J

ij

� J).

In the LDA+U methods the total energy may be writ-

ten as:
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A. LDA+U

DFT

In the AMF (Around Mean Field) method of Czyzyk

and Sawatzky [2] which is also the method we prefer now

and call LDA+U

DFT

:
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where the �rst sum is over atoms selected for the LDA+U

correction , n
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is occupation of the jl;m; �i orbital, and
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is the average number of electrons in orbital with spin �.

The potential which corresponds to E

LDA+U

may be

written as
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Kohn-Sham equation is now:
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The kinetic energy in presence of the LDA+U potential

is:
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Taking into account that V

LDA+U

is nonzero only within

the atomic spheres of selected atoms:
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The expression for the total energy is now:
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Finally, inserting (11),(14) in (18) we get
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which is the same as:
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Note that the results is an analog of the double cor-

rection term for the Hartree energy (compare eqs. 3, 8).

This is not surprising, as it is a consequence of the fact

that Hartree energy is quadratic function of density and

E

LDA+U

is quadratic in occupation numbers.

B. LDA+U

SIC

In the method we call LDA+U

SIC

(Anisimov et al. [3],

Solovyev et al. [4], Liechtenstein et al. [5], Shick et al. [6],

also 'atomic limit' version of Czyzyk and Sawatzky [2]):
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where E

ee

is the mean �eld approximation to the

electron-electron interaction in the spherically symmet-

rical atom, E

dc

is the double counting correction. Using

the same approximations as in preceeding subsection:
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where N is the total number of electrons, N
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is the total

number of electrons with spin �:
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The double summation term is:
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additional potential, which corresponds to this energy is

given by (13) with:
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Proceeding as in the above subsection we get:
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is substituted in

eq. 23 of Shick et al. [6], identical result is obtained.

C. LDA+U

DFT

- general case

To simplify the equations we introduce the notation:
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where n
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is (m;m
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) element of the occupation num-

ber matrix with spin �. E
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is then
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The potential (14) now becomes a matrix with its (m;m

0

)

element:
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The expression for the kinetic energy is:
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Noting that
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the total energy, in which kinetic energy was replaced by

the sum over eigenvalues, is rewritten as:
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which is the �nal result to be used to calculate the total

energy in the rotationally invariant LDA+U

DFT

scheme.
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D. LDA+U

SIC

- general case

Expression (34) should be correct whatever is the form
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Using (35) this becomes
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Double counting energy is still given by (24) so that
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According to eqs. (23-24) of SLP the energy
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inserting (39) we get

~

E =

~

E

0

+

U � J

2

X

m;�

n

2

m;�

� e (41)

Now we come to our derivation. The potential (SLP

eq. 16) is:
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Using the same notation as above
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So that using (34) we get the result
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Noting that
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we get the same result as SLP (see eq. 41, SLP eq. 23-

24).

III. CONCLUSION

To calculate the total energy in the LDA+U method,

in case the sum over eigenvalues is used instead of the

kinetic energy, we recomend to use the equation:
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This formula holds for any LDA+U potential which may

be written in the form
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in particular for both 'DFT' and 'SIC' methods. More-

over, it is rotationally invariant and may be easily imple-

mented.
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