Expression for total energy in LDA+U methods
(May 22 2001)

I. LDA TOTAL ENERGY

Total energy as given by Singh [1] eq. (2.1.3) is
Ey=Tso+ Eei + En + Ei; + Exc (1)

where:

Ts,o is the kinetic energy,

E.; is Coulomb electron-nuclei interaction,
Ep is the Hartree energy

e p)p()

E;; is the nuclei-nuclei Coulomb interaction, and
Ex ¢ is the exchange correlation energy

Corresponding Kohn-Sham equation is (Singh egs.
2.1.6-2.1.9)

(T + Ve + Vi + Vxo)pi = €p; (3)
with
(7"
u() = [ ar' L A7 @
0Exc
Vxc(7) = 5
xc(7) 3p (5)
and
p=> ¥ (6)

occ

To express the kinetic energy T's o in (1) using ) .. €,
equation (3) is multiplied from left by ¢}, integrated over
7 and summed over occupied orbitals. The result is:

TSO_ZQ /drpf')Vel-i-VH+VXC] (7)

occ

This expression is then substituted to (1).
account that

Ba= [ @ Vs Ba =5 [divive @

Taking into

~ o1
Ey = Zei +Ei; + Exc — /dTP(F)[§VH +Vxc] (9)

occ

which is the desired expression (Singh 2.2.2). The tilde
upon Ey means that T's was replaced by > .. €;. The
above derivation assumes the non-spin polarized calcula—
tion, but the generalization for the spin-polarized prob-

lems is straightforward and obvious.

II. LDA+U TOTAL ENERGY

First we assume (general case will be treated after-
wards) that:

e Density matrix is diagonal.

e U is the same for all Coulomb interaction (U;; =
U) and J is the same for all exchange interaction
(Jij = J)

In the LDA+U methods the total energy may be writ-
ten as:

E=FEy+ Erpa+u (10)

A. LDA+UPFT

In the AMF (Around Mean Field) method of Czyzyk
and Sawatzky [2] which is also the method we prefer now
and call LDA+UPFT:

ELDA-',—U—_—Z Z Z (Nm,e —Tig)?  (11)

iat m=—lo=1,]

where the first sum is over atoms selected for the LDA+U
correction , ny,  is occupation of the |I,m, o) orbital, and

1
n, — —— 12
S | mz fim.e (12)

is the average number of electrons in orbital with spin o.
The potential which corresponds to Eppa+y may be
written as

VLDA+U = ZZ |m70>vm70<m70| (13)
iat m,o
with
E
Vo = OBiparv _ —(U = (o — 7ig).  (14)

O o
Kohn-Sham equation is now:
(T + Vei + Va + Vxeo + Viparu) i = €. (15)

The kinetic energy in presence of the LDA+U potential
is:

Ts=Tso— Y _(pilVLpatules). (16)

occ



Taking into account that Vi p 44 ¢ is nonzero only within
the atomic spheres of selected atoms:

Ts=Tso—»_ Y [(#ilm, o) vme =Tso =Y imoVm,o
m,o

m,o occ

(17)
The expression for the total energy is now:
E = EO + ELDAJrU - Z Nm,ocUm,o (18)
Finally, inserting (11),(14) in (18) we get
S - Uu-J
E=FEy+ 5 (”i“r - ny) (19)
m,o
which is the same as:
- Uu-J
E =FEy+ T (nm,a ﬁa)Z (20)

Note that the results is an analog of the double cor-
rection term for the Hartree energy (compare eqgs. 3, 8).
This is not surprising, as it is a consequence of the fact
that Hartree energy is quadratic function of density and
Erpa+u is quadratic in occupation numbers.

B. LDA+4US¢

In the method we call LDA+U!¢ (Anisimov et al. [3],
Solovyev et al. [4], Liechtenstein et al. [5], Shick et al. [6],
also ’atomic limit’ version of Czyzyk and Sawatzky [2]):

EiLpa+v = E*“ — E% (21)

where FE,.. is the mean field approximation to the
electron-electron interaction in the spherically symmet-
rical atom, E is the double counting correction. Using
the same approximations as in preceeding subsection:

ee_U 2 J 2 v-J 2
E _2N—2;N0— 5 ngnm’a (22)

where N is the total number of electrons, IV, is the total
number of electrons with spin o:

Ne =) fme; N=Np+N,. (23)
m
The double summation term is:
U J
de _ - _ _ 7 _
B =2 N(N-1)- 3 ;NU(NJ 1) (24)
and
U-J ‘
Erpayu = T(N - n;nfn,a')' (25)

additional potential, which corresponds to this energy is
given by (13) with:

Uu-J
’Umﬂ— = T(l — 2nm70) (26)
Proceeding as in the above subsection we get:
E=Ey+ % n2, . (27)
m,o

IfU;; =U, Jij = J and n; j,» = n;,+0;,; is substituted in
eq. 23 of Shick et al. [6], identical result is obtained.

C. LDA+UPFT _ general case

To simplify the equations we introduce the notation:
(28)

where 7, 7o is (m, m') element of the occupation num-
ber matrix with spin 0. Erpa+u is then

Nmm',c = NMm,m’,c — nm,m,a(sm,m’

!
0,0

>

mi,mz,ms3,mas

ELDA+U = 5 ﬁml,mzﬁﬁMmmzx,U’

{{m1,m3|Vee|ma, ma) —
<m17m3|‘/66|m47m2>60',0"} (29)
with
(ma, m3|Vee|ma, ma)y = Zak(mlam2:m37m4)Fk;

k
a(my,mz,msz, my) =
47
2k +1
q

k
D (tma [Yig[tms) (Ims| Y, [lma)  (30)
=—k

The potential (14) now becomes a matrix with its (m, m')

element:
E : ﬁm37m47¢7’

mg,ma,o’

vm17m27‘7 =

{{m1,mz|[Vee|ma, ma) — (ma, ms|Vee|ma, m2)dg,0} (31)
The expression for the kinetic energy is:

TS = TS,O - Z Umi,ma,0 Z(‘p”ml: U)<m27 U|(pi>

mi,ma,0 occ

(32)
Noting that

Z(@i|m170—><m270—|@i> = Nmy,ma,o (33)
occ
the total energy, in which kinetic energy was replaced by

the sum over eigenvalues, is rewritten as:

E=Eo+ELparu — Y_Tr{nsv,} (34)

which is the final result to be used to calculate the total
energy in the rotationally invariant LDA+UP*T scheme.



D. LDA+U®!¢ - general case

Expression (34) should be correct whatever is the form
of the potential v,. As the trace is invariant with re-
spect to the unitary transformation, the representation
in which 1y, is diagonal may be used, without lost
of generality. Otherwise we follow Shick et al. [6] (SLP
in what follows), as only in this paper the expression for
E is given. To make connection with above sections we

denote:
Unm' = U + tmm;
Jmm’ = J+jmm’:m 75.]7
Jmm? :U+jmm7m:j7 Jmm = Umm (35)

The energy E¢¢ (eq. 22, SLP eq. 2) is then

1 0,0
E°¢ = 5 Z {Umm’ - Jmm’(sa,a’ }nm,anm’,a’ (36)

m,m’

Using (35) this becomes

)

U J u-J
ee _ ~ a2 _ 2 2_ Y < 2
E“= 2N 22‘7 N2 5 n2  +e (37

m,o

where e is given by (e=0, if wpm m' = Jm,m’ = 0)

1 0,0
€= 5 Z {umm’ - jmm’ 60'70’}nm,a'nm’7a’ (38)

Double counting energy is still given by (24) so that

N - A
3(U —J) - % ny.+e (39

m,o

Eee — Edc —

According to eqs. (23-24) of SLP the energy E is:
. . 1
E=Ey—E*+E%* + U —JI)N (40)

inserting (39) we get

E:E‘o+¥ n? —e (41)

m,o
m,o

Now we come to our derivation. The potential (SLP
eq. 16) is:

Um,e = Z (Um,m’

m' o’

- Jm,m’ 50,0’ )nm’ o'

_U(N - %) + J(N, — %) (42)

Using the same notation as above

1
Vm,e = (U — J)(§ —Nno) + Wi o (43)

where

Wm,e = Z (um,m’ - jm,m’60'7o")nm’,a" (44)

m',o’

trace of (vyny) is

Tr(vens) = (U — J)(%NU - anng) + Tr(w,ngy)

(45)
So that using (34) we get the result
~ ~ N
E=FE+ ?(U —J)
——U —J n2, . +e
2 m,o
m,o
N 2
U =D+ U- N> nh, (46)
- ZTT(anU)
which reduces to
N A
E=FEy+ 5 n72n,¢7 +e— Z Tr(wantf) (47)

Noting that

e=2 Z Tr(wene) (48)

we get the same result as SLP (see eq. 41, SLP eq. 23-
24).

ITII. CONCLUSION

To calculate the total energy in the LDA+U method,
in case the sum over eigenvalues is used instead of the
kinetic energy, we recomend to use the equation:

E=Eo+ELparu — Y_Tr{nsv,} (49)

This formula holds for any LDA+U potential which may
be written in the form

VLDA+U = Z Z |m7 U)”m,m’,0'<mla U|7 (50)

iat m,m'o

in particular for both 'DFT’ and ’SIC’ methods. More-
over, it is rotationally invariant and may be easily imple-
mented.
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