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1 Introduction

The Linearized Augmented Plane Wave (LAPW) method has proven to be one of the most accurate
methods for the computation of the electronic structure of solids within density functional theory.
A full-potential LAPW-code for crystalline solids has been developed over a period of more than
thirty years. A first copyrighted version was called WIEN and it was published by

P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, in
Comput. Phys. Commun. 59, 399 (1990).

In the following years significantly improved and updated UNIX-type versions of the original
WIEN-code were developed, which were called WIEN93, WIEN95 and WIEN97. Now a new ver-
sion, WIEN2k, is available, which is based on an alternative basis set. This allows a significant
improvement, especially in terms of speed, universality, user-friendliness and new features.

WIEN2k is written in FORTRAN 90 and requires a UNIX/Linux-type operating system since the
programs are linked together via C-shell scripts. It has been implemented successfully on many
different Intel (AMD) based computer systems running under Linux, but also on the IBM RS6000
series. It is expected to run on any modern LINUX (UNIX) system.

Hardware requirements will change from case to case (small cases with 60 atoms per unit cell can
be run on any Intel (AMD) based PC/Laptop, but generally we recommend a powerful PC or
workstation with a modern Intel I7/I9 multi-core cpu and at least 16 GB (better: 4-8 Gb/core or
more) memory and 1-2 Tb of disk space. It can utilize multi-core shared memory hardware effi-
ciently up to 4-8 cores. For a very efficient coarse grain parallization on the k-point level, a cluster
of PCs with Gb/s network is sufficient. Faster communication (infiniband or a larger multi-core
node with modern Intel-Xeons) is needed for the fine grain (single k-point) mpi-parallel version,
which is necessary for unit cells with more than 100 atoms.

In order to use the main options (non-mpi) and features (such as the graphical user interface
w2web or some of its plotting tools) the following (public domain) program packages must be
installed:

I Fortran 90 compiler (we recommend Intels ifort, but gfortran is fine too)
I efficient Blas/Lapack libraries (Intels mkl, or a recent OpenBlas library)
I FFTW3
I csh or tcsh
I perl 5 or higher (for w2web only)
I an editor of your choice (vi, ”xterm -e vi”, emacs, nedit, gedit, ...)
I ghostscript (with jpg support)
I gnuplot (with png support)
I www-browser
I pdf-reader (okular, evince, xpdf, ...)
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Usually these packages should be available on any modern Linux system. If one of these packages
is not available by default, it can usually be installed easily from the Linux distribution or from
public domain sources (see Chapt. 11) or the corresponding configuration may be changed (e.g.
using vi instead of emacs). Additional software is needed for the mpi-version (see Chapt. 11)i but
is only necessary when the corresponding high-end hardware is available AND you want to run
cases with at least 50 atoms or more.

The development of WIEN2k was made possible by support from many sources. We try to give
credit to all who have contributed. We hope not to have forgotten anyone who made an important
contribution for the development or the improvement of the WIEN2k code. If we did, please let us
know (we apologize and will correct it). The main developers in addition to the authors are the
following groups:

I G. Abo (Univ.Alabama): numerous bug fixes, outstanding contributions to the mailing list
I C. Ambrosch-Draxl (Univ. Graz, Austria) and her group: optics
I M. Bagheri (Vienna): pes
I K. Belbase (Vienna): lcore potential extensioni, stress tensor
I T. Charpin (Paris): elastic constants
I J. Doumont (Vienna): LDA-1/2i, diret tau calculation, gKS meta-GGA calculations
I H. Hofstaetter and O.Koch (Vienna): iterative diagonalization
I C. Först (Vienna): afminput
I M. Jamal (Iran): various scripts, 2DRoptimize, IRelast, Tmaker
I K. Jorissen (Univ.Antwerp), C.Hebert (TU Wien): telnes3
I E. Kabliman (TU Vienna): arrows
I L. Kalantari (TU Vienna): l-mBJ
I F. Karsai (TU Vienna): elast, lapwso, HDLOs
I W. Lafargue-Dit-Hauret (Rennes): init orb lapw, *.cf files in qtl
I R. Luke (Univ. Delaware): new mixer (MSEC1)
I M. Nelhiebel, P. Schattschneider (Vienna), Kevin Jorissen (Univ. Antwerp), C.Hebert (TUW):

(telnes)
I P. Novák and J. Kuneš (Prague): LDA+U, SO, lapwdm, qtl, dipan
I P. Ondracka: OpenMP parallelization (lapw0, lapw1, lapw2, optic)
I C. Persson (Uppsala): irreducible representations
I O. Rubel (McMasters Univ): BerriPy, mstar
I T. Ruh (Vienna): ELPA-interface, 3ddens, nlvdw
I M. Scheffler (Fritz Haber Inst., Berlin): and his group, forces, dstart, geometry optimization
I E. Sjöstedt and L Nordström (Uppsala, Sweden): APW+lo
I J. Sofo and J. Fuhr (Barriloche): Bader analysis
I P. Wissgott, E.Assmann and J.Kunes (TU Vienna): wien2wannier
I B. Yanchitsky and A. Timoshevskii (Kiev): sgroup

We want to thank those WIEN97 users, who reported bugs or made suggestions and thus con-
tributed to new versions as well as persons who have made major contributions in the develop-
ment of previous versions of the code:

I R. Augustyn (Vienna), U. Birkenheuer (Munich, wavefunction plotting), P. Blöchl (IBM
Zürich), F. Boucher (Nantes), A. Chizmeshsya (Arizona), R.Dohmen and J.Pichlmeier (RZG
Garching, parallelization) P. Dufek (Vienna), H. Ebert (Munich), E. Engel (Frankfurt), H.
Enkisch (Dortmund), M. Fähnle (MPI Stuttgart), B. Harmon (Ames, Iowa), S. Kohlhammer
(Stuttgart), T. Kokalj (Ljubljana), H. Krimmel (Stuttgart), P. Louf (Vienna), I. Mazin (Wash-
ington), M. Nelhiebel (Vienna), V. Petricek (Prague), C. Rodrigues (La Plata, Argentina), P.
Schattschneider (Vienna), R. Schmid (Frankfurt), D. Singh (Washington), H. Smolinski (Dort-
mund), T. Soldner (Leipzig), P. Sorantin (Vienna), S. Trickey (Gainesville), S. Wilke (Exxon,
USA), B. Winkler (Kiel)
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2 The basic concepts of the present
band theory approach

2.1 The density functional theory

An efficient and accurate scheme for solving the many-electron problem of a crystal (with nuclei
at fixed positions) is the local spin density approximation (LSDA) within density functional the-
ory ([Hohenberg and Kohn, 1964], [Kohn and Sham, 1965]). Therein the key quantities are the spin
densities ρσ(r) in terms of which the total energy is

Etot(ρ↑, ρ↓) = Ts(ρ↑, ρ↓) + Eee(ρ↑, ρ↓)+ ENe(ρ↑, ρ↓) + Exc(ρ↑, ρ↓) + ENN

with ENN the repulsive Coulomb energy of the fixed nuclei and the electronic contributions, la-
belled conventionally as, respectively, the kinetic energy (of the non-interacting particles), the
electron-electron repulsion, nuclear-electron attraction, and exchange-correlation energies. Two
approximations comprise the LSDA, i), the assumption that Exc can be written in terms of a local
exchange-correlation energy density µxc times the total (spin-up plus spin-down) electron density
as

Exc =

∫
µxc(ρ↑, ρ↓) ∗ [ρ↑ + ρ ↓]dr (2.1)

and ii), the particular form chosen for that µxc. Several forms exist in literature, we use the most
recent and accurate fit to the Monte-Carlo simulations of Ceperly and Alder by Perdew and Wang
[Perdew and Wang, 1992]. Etot has a variational equivalent with the familiar Rayleigh-Ritz prin-
ciple. The most effective way known to minimize Etot by means of the variational principle is to
introduce orbitals χσik constrained to construct the spin densities as

ρσ(r) =
∑
i,k

ρσik|χσik(r)|2 (2.2)

Here, the ρσik are occupation numbers such that 0 ≤ ρσik ≤ 1/wk, wherewk is the symmetry-required
weight of point k. Then variation of Etot gives the Kohn-Sham equations (in Ry atomic units),

[−∇2 + VNe + Vee + V σxc]χ
σ
ik(r) = εσikχ

σ
ik(r) (2.3)

which must be solved and thus constitute the primary computational task. This Kohn-Sham equa-
tions must be solved self-consistently in an iterative process, since finding the Kohn-Sham orbitals
requires the knowledge of the potentials which themselves depend on the (spin-) density and thus
on the orbitals again.

7
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Recent progress has been made going beyond the LSDA by adding gradient terms of the elec-
tron density to the exchange-correlation energy or its corresponding potential. This has led
to the generalized gradient approximation (GGA) in various parameterizations, e.g. PW91
[Perdew et al., 1992] or Perdew, Burke and Ernzerhof (PBE) [Perdew et al., 1996], which is the rec-
ommended option.

Recent meta-GGA versions called PKZB [Perdew et al., 1999], TPSS [Tao et al., 2003] and in particu-
lar SCAN [Sun et al., 2015b] and TM [Tao and Mo, 2016] employ for the evaluation of the exchange-
correlation energy not only the gradient of the density, but also the kinetic energy density τ(r).
Such meta-GGA calculations can be done non-self-consistent (a posteriory from a converged GGA
calculation) or self-consistent within the generalized Kohn-Sham (gKS) scheme. Such calculations
are not much more expensive than standard GGA and highly recommended for more accurate
binding energies.

Band gaps can be calculated efficiently and accurately using the Tran-Blaha modified Becke-
Johnson (TB-mBJ) potential ([Tran and Blaha, 2009]). A local version of the TB-mBJ potential
[Rauch et al., 2020] has been proposed for interfaces and systems with vacuum.

Van der Waals interactions can be included by using the DFT-D3 [Grimme et al., 2010,
Grimme et al., 2011] or DFT-D4 [Caldeweyher et al., 2017, Caldeweyher et al., 2019,
Caldeweyher et al., 2020] method of Grimme, or by using a nonlocal van der Waals functional
[Dion et al., 2004].

For correlated electron systems fast schemes like DFT+U and EECE ([Tran et al., 2006]) are also
implemented.

Last but not least, also Hartree-Fock and in particular (screened) Hybrid-DFT is also available
([Tran and Blaha, 2011]).

2.2 The Full Potential APW methods

Recently, the development of the Augmented Plane Wave (APW) methods from Slater’s APW, to
LAPW and the new APW+lo was described by [Schwarz et al., 2002].

2.2.1 The LAPW method

The linearized augmented plane wave (LAPW) method is among the most accurate methods
for performing electronic structure calculations for crystals. It is based on the density func-
tional theory for the treatment of exchange and correlation and uses e.g. the local spin den-
sity approximation (LSDA). Several forms of LSDA potentials exist in the literature , but recent
improvements using the generalized gradient approximation (GGA) are available too (see sec.
2.1). For valence states relativistic effects can be included either in a scalar relativistic treat-
ment [Koelling and Harmon, 1977] or with the second variational method including spin-orbit
coupling ([MacDonald et al., 1980], [Novák, 1997]). Core states are treated fully relativistically
[Desclaux, 1969].

A description of this method to linearize Slater’s old APW method (i.e. the LAPW formalism) and
further programming hints are found in many references: [Andersen, 1973, Andersen, 1975],
[Koelling, 1972], [Koelling and Arbman, 1975] [Wimmer et al., 1981],[Weinert, 1981],
[Weinert et al., 1982], [Blaha and Schwarz, 1983], [Blaha et al., 1985], [Wei et al., 1985],
[Mattheis and Hamann, 1986], [Jansen and Freeman, 1984], [Schwarz and Blaha, 1996]). An
excellent book by [Singh and Nordström, 2006] describes all the details of the LAPW method and
is highly recommended to the interested reader. Here only the basic ideas are summarized; details
are left to those references.
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Like most “energy-band methods“, the LAPW method is a procedure for solving the Kohn-Sham
equations for the ground state density, total energy, and (Kohn-Sham) eigenvalues (energy bands)
of a many-electron system (here a crystal) by introducing a basis set which is especially adapted to
the problem.

Figure 2.1: Partitioning of the unit cell into atomic spheres (I) and an interstitial region (II)

This adaptation is achieved by dividing the unit cell into (I) non-overlapping atomic spheres (cen-
tered at the atomic sites) and (II) an interstitial region. In the two types of regions different basis
sets are used:

1. (I) inside atomic sphere t, of radius Rt, a linear combination of radial functions times spheri-
cal harmonics Ylm(r) is used (we omit the index t when it is clear from the context)

φkn =
∑
lm

[Alm,knul(r, El) +Blm,kn u̇l(r, El)]Ylm(r̂) (2.4)

where ul(r, El) is the (at the origin) regular solution of the radial Schroedinger equation for
energy El (chosen normally at the center of the corresponding band with l-like character)
and the spherical part of the potential inside sphere t; u̇l(r, El) is the energy derivative of
ul evaluated at the same energy El. A linear combination of these two functions constitute
the linearization of the radial function; the coefficients Alm and Blm are functions of kn (see
below) determined by requiring that this basis function matches (in value and slope) each
plane wave (PW) the corresponding basis function of the interstitial region; ul and u̇l are
obtained by numerical integration of the radial Schroedinger equation on a radial mesh
inside the sphere.

2. (II) in the interstitial region a plane wave expansion is used

φkn =
1√
ω
eikn·r (2.5)

where kn = k + Kn; Kn are the reciprocal lattice vectors and k is the wave vector inside
the first Brillouin zone. Each plane wave is augmented by an atomic-like function in every
atomic sphere.

The solutions to the Kohn-Sham equations are expanded in this combined basis set of LAPW’s
according to the linear variation method

ψk =
∑
n

cnφkn (2.6)

and the coefficients cn are determined by the Rayleigh-Ritz variational principle. The convergence
of this basis set is controlled by a cutoff parameter RmtKmax = 6 - 9, where Rmt is the smallest
atomic sphere radius in the unit cell and Kmax is the magnitude of the largest K vector in equation
(2.6).
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In order to improve upon the linearization (i.e. to increase the flexibility of the basis) and to make
possible a consistent treatment of semicore and valence states in one energy window (to ensure
orthogonality) additional (kn independent) basis functions can be added. They are called “local
orbitals (LO)“ (Singh 91) and consist of a linear combination of 2 radial functions at 2 different
energies (e.g. at the 3s and 4s energy) and one energy derivative (at one of these energies):

φLOlm = [Almul(r, E1,l) +Blmu̇l(r, E1,l) + Clmul(r, E2,l)]Ylm(r̂) (2.7)

The coefficients Alm, Blm and Clm are determined by the requirements that φLO should be normal-
ized and has zero value and slope at the sphere boundary.

2.2.2 The APW+lo method

Sjöstedt, Nordström and Singh [Sjöstedt et al., 2000] have shown that the standard LAPW method
with the additional constraint on the PWs of matching in value AND slope to the solution inside
the sphere is not the most efficient way to linearize Slater’s APW method. It can be made much
more efficient when one uses the standard APW basis, but of course with ul(r, El) at a fixed energy
El in order to keep the linear eigenvalue problem. One then adds a new local orbital (lo) to have
enough variational flexibility in the radial basisfunctions:

φkn =
∑
lm

[Alm,knul(r, El)]Ylm(r̂) (2.8)

φlolm = [Almul(r, E1,l) +Blmu̇l(r, E1,l)]Ylm(r̂) (2.9)

This new lo (denoted with lower case to distinguish it from the LO given in equ. 2.7) looks almost
like the old “LAPW”-basis set, but here the Alm and Blm do not depend on kn and are determined
by the requirement that the lo is zero at the sphere boundary and normalized.

Thus we construct basis functions that have “kinks” at the sphere boundary, which makes it nec-
essary to include surface terms in the kinetic energy part of the Hamiltonian. Note, however, that
the total wavefunction is of course smooth and differentiable.

As shown by [Madsen et al., 2001] this new scheme converges practically to identical results as the
LAPW method, but allows to reduce “RKmax” by about one, leading to significantly smaller basis
sets (up to 50 %) and thus the corresponding computational time is drastically reduced (up to an
order of magnitude). Within one calculation a mixed “LAPW and APW+lo” basis can be used for
different atoms and even different l-values for the same atom [Madsen et al., 2001]. In general one
describes by APW+lo those orbitals which converge most slowly with the number of PWs (such
as TM 3d states) or the atoms with a small sphere size, but the rest with ordinary LAPWs. One
can also add a second LO at a different energy so that both, semicore and valence states, can be
described simultaneously.

In order to remove any larger linearization error, one can add multiple LOs (HELOs at higher
energies to improve the unoccupied states several Ry above EF), and HDLOs which contain the
second energy derivative of the radial wave function ül(r) ([Karsai et al., 2017]).

2.2.3 General considerations

In its general form the LAPW (APW+lo) method expands the potential in the following form
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V (r) =


∑
LM

VLM (r)YLM (r̂) inside sphere∑
K

VKe
iK·r outside sphere (2.10)

and the charge densities analogously. Thus no shape approximations are made, a procedure fre-
quently called a “full-potential“ method.

The “muffin-tin“ approximation used in early band calculations corresponds to retaining only the
l = 0 component in the first expression of equ. 2.10 and only the K = 0 component in the second.
This (much older) procedure corresponds to taking the spherical average inside the spheres and
the volume average in the interstitial region.

The total energy is computed according to [Weinert et al., 1982].

Rydberg atomic units are used except internally in the atomic-like programs (LSTART and LCORE)
or in subroutine outwin (LAPW1, LAPW2), where Hartree units are used. The output is always
given in Rydberg units.

The forces at the atoms are calculated according to [Yu et al., 1991]. For the implementation of this
formalism in WIEN see [Kohler et al., 1996] and [Madsen et al., 2001]. An alternative formulation
by [Soler and Williams, 1989] has also been tested and found to be equivalent, both in computa-
tionally efficiency and numerical accuracy [Krimmel et al., 1994].

Recently, a formalism for the stress tensor has been presented [Belbase et al., 2021] and imple-
mented in WIEN2k. Unfortunately it is restricted to NREL (non-relativistic) calculations.

The Fermi energy and the weights of each band state can be calculated using a modified tetrahe-
dron method [Blöchl et al., 1994], a Gaussian or a temperature broadening scheme.

Spin-orbit interactions can be considered via a second variational step using the scalar-
relativistic eigenfunctions as basis, see [MacDonald et al., 1980], [Singh and Nordström, 2006] and
[Novák, 1997]. In order to overcome the problems due to the missing p1/2 radial basis function in
the scalar-relativistic basis (which corresponds to p3/2), we have recently extended the standard
LAPW basis by an additional “p1/2-local orbital”, i.e. a LO with a p1/2 basis function, which is
added in the second-variational SO calculation ([Kuneš et al., 2001]).

It is well known that for localized electrons (like the 4f states in lanthanides or 3d states in some
TM-oxides) the LDA (GGA) method is not accurate enough for a proper description. Thus we have
implemented various forms of the LDA+U method as well as the “Orbital polarization method”
(OP) (see [Novák, 2001] and references therein). In addition you can also calculate exact-exchange
inside the spheres and apply various hybrid functionals (see [Tran et al., 2006] for details).

One can also consider interactions with an external magnetic (see [Novák, 2001]) or electric field
(via a supercell approach, see [Stahn et al., 2001]).

PROPERTIES:

The (partial) density of states (DOS) can be calculated using the modified tetrahedron method of
[Blöchl et al., 1994].

X-ray absorption and emission and electron energy loss (ELNES) spectra are determined using
Fermi’s golden rule and dipole matrix elements (between a core and valence or conduction band
state respectively), see [Neckel et al., 1975], [Schwarz et al., 1979, Schwarz and Wimmer, 1980]. Su-
percells allow to include core-holes.

X-ray structure factors are obtained by Fourier Transformation of the charge density.

Optical properties (dielectric function, optical conductivity, ...) are obtained using
the “Joint density of states” modified with the respective dipole matrix elements ac-
cording to [Ambrosch-Draxl et al., 1995, Abt et al., 1994, Abt, 1997] and in particular
[Ambrosch-Draxl and Sofo, 2006]. A Kramers-Kronig transformation is also available.
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An analysis of the electron density according to Bader’s “atoms in molecules” theory can be made
using a program by [Sofo and Fuhr, 2001].

Valence band Photoelectron spectroscopy (XPS, UPS) can be calculated from the partial DOS and
the corresponding atomic cross sections [Bagheri and Blaha, 2019].

Hyperfine interactions (Isomer shifts, Hyperfine fields, Quadrupole splittings, NMR shifts in insu-
lators and metals) as measured by Mössbauer, NMR or PAC spectroscopy.

Phonons with an interface to K.Parlinski’s PHONON or A. Togos Phonopy program.
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We assume that WIEN2k is properly installed and configured for your site and that you ran
userconfig lapw to adjust your path and environment. (For a detailed description of the in-
stallation see chapter 11.

This chapter is intended to guide the novice user in the handling of the program package. We
will use the example of TiC in the sodium chloride structure to show which steps are necessary to
initialize a calculation and run a self consistent field cycle. We also demonstrate how to calculate
various physical properties from these SCF data. Along the way we will give all important infor-
mation in a very abridged form, so that the novice user is not flooded with information, and the
experienced user will be directed to more complete information.

In this chapter we will also show, how to setup and run the calculations using the graphical user
interface w2web or the commandline interface.

3.1 Naming conventions

Before we begin with our introductory example, we describe the naming conventions, to which we
will adhere throughout this user’s guide.

On UNIX systems the files are specified by case.type and it is required that all files reside in a
subdirectory ./case. Here and in the following sections and in the shell scripts which run the
package themselves, we follow a simple, systematic convention for file labeling.

For the general discussion (when no specific crystal is involved), we use case, while for a specific
case, e.g. TiC, we use the following notation:

13
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Figure 3.1: TiC in the sodium chloride structure. This plot was generated using XCrysDen (see
9.31.1), which shows up in w2web when xcrysden is properly installed. Alternatively, also VESTA
(see 9.31.2) can plot WIEN2k-structures.

case=TiC

The filetype “type” always describes the content of the file (e.g.,

type=inm is inPUT for mIXER).

Thus the input to MIXER for TiC is found in the file

TiC.inm

which should be in subdirectory ./TiC.

3.2 Starting the w2web server

Start the user interface w2web on the computer where you want to execute WIEN2k(you may have
to ssh,.. to this machine) with the command

w2web [-p xxxx]

If the default port (7890) used to serve the interface is already in use by some other process,
you will get the error message w2web failed to bind port 7890 - port already in
use!. Then you will have to choose a different port number (between 1024 and 65536) . Please
remember this port number, you need it when connecting to the w2web server.

Note: Only user root can specify port numbers below 1024!

At the first startup of this server, you will also be asked to setup a username and password, which
is required to connect to this server.

The w2web server will run until the computer is rebooted. This may cause problems when you
logout and login remotely, because the DISPLAY variable for XCrysDen may no longer be valid.
Thus we recommend to kill the server before you logout using kill w2web and restart the server
when you login again.
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3.3 Connecting to the w2web server

Use your favorite WWW-browser to connect to w2web, specifying the correct portnumber, e.g.

firefox http://hostname where w2web runs:7890

(If you do not remember the portnumber, you can find it by using “ps -ef | grep w2web” on the
computer where w2web is running.) You should see a screen as in Fig.3.2.

3.4 Creating a new session

The user interface w2web uses sessions to distinguish between different working environments
and to quickly change between different calculations. First you have to create a new session (or
select an old one). Enter “TiC” and click the “Create” button.
Note: Creating a session does not automatically create a new directory!

You will be placed in your $W2WEB CASE BASEDIR directory if no working directory was desig-
nated to this session previously (or if the directory does not exist any more).

Figure 3.2: Startup screen of w2web
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3.5 Creating a new case-directory

Using “Session Mgmt. o change directory” you can select an existing directory or create a new one.
For this example create a new directory lapw and than TiC using the “Create” button. After the
directory has been created, you have to click on select current directory to assign this newly created
directory to the current session.

After clicking on Click to restart session the main window of w2web will appear (Fig.3.3.

Figure 3.3: Main window of w2web

3.6 Creating the “master input“ file case.struct

To create the file TiC.struct start the struct-file generator using “Execution o StructGen” (see
figure 3.4).

For a new case w2web creates an empty structure template in which you can specify structural
data. Later on this information is used to generate the TiC.struct file.

As a first step specify the number of atoms (2 for TiC) and fill in the data given below into the
corresponding fields (white boxes):

Title TiC
Lattice F (for face centered)
a 4.328 Å(make sure the Ang button is selected)
b 4.328 Å
c 4.328 Å
α, β, γ 90
Atom Ti, enter position (0,0,0)
Atom C, enter position (.5,.5,.5)

Click “Save Structure” (Z will be updated automatically) and “set automatically RMT and con-
tinue editing ”:
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This will compute the nearest neigbor distances using the program nn and setrmt lapw will then
determine the optimal RMT values (muffin-tin radius, atomic sphere radius). To learn more about
the philosophy of setting RMTs see http://www.wien2k.at/reg_user/faq/rmt.html. Since
it is essential to keep RMTs constant within a series of calculations (eg. when you do a Volume-
optimization, see 3.11.6 ), you should already now decide whether you want to do just one single
calculation with fixed structural parameters, or whether you intend a relaxation of internal param-
eters (using forces) or a volume optimization, which would required reduced RMT values.

Choose a reduction of 3 % so that we can later optimize the lattice parameter.

Figure 3.4: StructGen of w2web

When you are done, exit StructGen with “save file and clean up”. This will generate the file
TiC.struct (shown now in view-only mode with a different background color), which is the
master input file for all subsequent programs.

If XCrysDen is installed in your PATH, you can now view the structure using “Execution oview
structure ”.

A few other hints on StructGen:

http://www.wien2k.at/reg_user/faq/rmt.html
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You have to click on Save Structure after every modifications you make in the white fields.
Add/remove a position/atom only if you have made no other changes before.

In a face-centered (body-centered) spacegroup you have to enter just one atom (not the ones in
(.5,.5,0),. . . ).

StructGen offers a built in calculator: Each position of equivalent atoms can be entered as a num-
ber, a fraction (e.g. 1/3) or a simple expression (e.g. 0.21 + 1/3). The first position defines the
variables x, y and z, which can be using in expression defining the other positions (e.g. −y, x,
−z + 1/2).

When you now choose “Files o show all files”, you will see, that tic.struct has been created.

For a detailed description of these files consult sections 4.3 and 6.4.3.

3.7 Initialization of the calculation (init lapw)

After the basic input file has been created, initalization of the calculation is done by “Execution o
initialize calc.” (see figure 3.5). For structures given by experiment (not man-made supercells,...)
you would usually run in “Fast mode”, where you can specify the desired precision and a few
other parameters and proper input files will be automatically generated (RKmax, GMAX, k-mesh).
However, this introduction will guide you through the ”Individual mode” necessary to initialite the
calculation, so that you get an idea about the different steps. Simply follow the steps that are
highlighted in green and follow the instructions.

The initialization process is also described in detail in section 5.1.3.

Figure 3.5: Initialization with w2web

For a manual initialization you have to run several steps one after the other and check the screen
for possible error or warning messages. x is the script to start WIEN2k programs (see section: 5.1.1).
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x nn calculates the nearest neighbors up to a specified distance and thus helps to determine the
atomic sphere radii (you must specify a distance factor f, e.g. 2, and all distances up to f *
NN-dist. are calculated)

view TiC.outputnn : check for overlapping spheres, coordination numbers, nearest neighbor dis-
tances and angles, (e.g. in the sodium chloride structure there must 6 nearest and 12 next
nearest neighbors). Using these distances and coordinations you can check whether you put
the proper positions into your struct file or if you made a mistake. nn also checks whether
your equivalent atoms are really crystallographically equivalent and possibly writes a new
struct-file which you may or may not accept. If you have not done so at the very beginning,
go back to StructGen and choose proper RMT values. See Sec.4.3.

x sgroup calculates the point and spacegroups for the given structure
view TiC.outputsgroup : Now you can either accept the TiC.struct file generated by sgroup

(if you want to use the spacegroup information or a different cell has been found by sgroup)
or keep your original file (default).

x symmetry generates from a raw case.struct file the space group symmetry operations, de-
termines the point group of the individual atomic sites, generates the LM expansion for the
lattice harmonics (in case.in2 st) and local rotation matrices (in case.struct st).

view TiC.outputs : check the symmetry operations (they have been written to or compared with
already available ones in TiC.struct by the program symmetry) and the point group sym-
metry of the atoms (You may compare them with the “International Tables for X-Ray Crys-
tallography“). If the output does not match your expectations from the “Tables”, you might
have made an error in specifying the positions. The TiC.struct file will be updated with
symmetry operations, positive (for “cubic” point group symmetries) or negativ atom counter
and the local rotation matrix.

instgen lapw : You are requested to generate an input file TiC.inst and can define the spin-
polarization of each atom. While this is not important for TiC, it is very important for spin-
polarized calculations and in particular for anti-ferromagnetic cases, where you should “flip”
the spin of the AFM atoms and/or set the spin of the “non-magnetic” atoms (eg. oxygen in
NiO) to zero.

x lstart generates atomic densities (see section 6.4) and determines how the orbitals are treated in
the band structure calculations (i.e. as core or band states, with or without local orbitals, . . . ).
You are requested to specify the desired exchange correlation potential and an energy that
separates valence from core states. For TiC select the recommended potential option “GGA
of Perdew-Burke-Ernzerhof 96” and a separation energy of -6.0 Ry.

edit TiC.outputst : check the output (did you specify a proper atomic configuration, did lstart
converge, are the core electrons confined to the atomic sphere, what are my core and valence
and semicore states ?). Warnings for the radial mesh can usually be neglected since it affects
only the atomic total energy. lstart generates TiC.in0 st, in1 st, in2 st, inc st and
inm st. For Ti it selects automatically 1s, 2s, and 2p as core states, the semicore 3s and 3p
will be treated with local orbitals together with 3d, 4s and 4p valence states.

edit TiC.in1 st : As mentioned, in batch mode the input files are generated automatically with
some default values which should be a reasonable choice for most cases. Here we recommend
that you go through these inputs and become familiar with them. The most important param-
eter here is RKMAX, which determines the number of basis functions (size of the matrices).
Values between 5.0-9.0 (3.0 if you have small H-spheres) are usually reasonable, here use 6.6.
For more information consult http://www.wien2k.at/reg user/faq/rkmax.html.
Here we will just change EMAX of the energy window from 1.5 to 2.0 Ry in order to be able to
calculate the unoccupied DOS to higher energies.

edit TiC.in2 st : Here you may increase the LM expansion, or increasse the value of GMAX (in
cases with small spheres (e.g. systems with H-atoms) it will be automatically increased any-
way) or specify a different BZ-integration method to determine the Fermi energy. For this
example you should not change anything so that you can compare your results with the test
run.

Copy all generated inputs (from case.in∗ st to case.in*). In cases without inversion sym-
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metry the files case.in1c, in2c are produced.
x kgen generates a k-mesh in the Brillouin zone (BZ). You must specify the number of k-points in

the whole BZ (use 1000 for comparison with the provided output, a “good” calculation needs
at least 10 times as much for such a small unitcell and metallic character). For details see
section 6.5.

view TiC.klist : check the number of k-points in the irreducible wedge of the BZ (IBZ). You can
now either rerun kgen (and generate a different k-mesh) or continue.

x dstart generates a starting density for the SCF cycle by superposition of atomic densities gener-
ated in lstart. For details see section 6.6.

view TiC.outputd (check if gmax >gmin)
Now you are asked , whether or not you want to run a spin-polarized calculation (in such a case

case dstart is re-run to generate spin-densities). For TiC say No.

Alternatively, w2web provides a “Fast-mode”, which is the recommended default and where a
desired precision or the most imortant inputs can be specified right at the beginning and then the
whole initialization runs at once. Please check carefully the STDOUT-listing and some output-
files for possible errors or warnings!!. Only for hand-made case.struct files (eg. using super-
cells, ...) one should run the first steps (from nn to symmetry step by step, since in such cases these
programs may rewrite case.struct and specify different multiplicities or even change the unit
cell.

Initialization of a calculation (running init lapw) will create all inputs for the subsequent SCF
calculation choosing some default options and values. You can find a list of input files using “Files
o input files” ( 3.6).

Figure 3.6: List of input files
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3.8 The SCF calculation

After the case has been set up, a link to “run SCF” is added, (“Run Programs o run SCF” and you
should invoke the self-consistency cycle (SCF). This runs the script run lapw with the desired
options.

The SCF cycle consists of the following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 (BANDS) calculates valence bands (eigenvalues and eigenvectors)
LAPW2 (RHO) computes valence densities from eigenvectors
LCORE computes core states and densities
MIXER mixes input and output densities

After selecting “run SCF” from the “Execution” menu, the SCF-window will open, and you can
now specify additional parameters. For this example we select charge convergence to 0.0001: Spec-
ify “charge” to be used as convergence criterion, and select a value of 0.0001 (-cc 0.0001).

To run the SCF cycle, click on “Run!”

Since this might take a long time for larger systems; you can specify the “Execution type” to be batch
or submit (if your system is configured with a queuing system and w2web has been properly set
up, see section 11.3).

While the calculation is running (as indicated by the status frame in the top right corner of the
window), you can monitor several quantities (see section 3.9).

Once the calculation is finished (9 iterations), view case.dayfile for timing and errors and com-
pare your results with the files in the provided example (TiC/case scf).

For magnetic systems you would run a spin-polarized calculation with the script runsp lapw.
The program flow of such a calculation is described in section 4.5.2 and the script itself in section
5.1.4.

3.9 The “history“ file case.scf

During the SCF cycle the essential data of each iteration are appended to the file case.scf, in our
example TiC.scf. For an easier retrieval of certain quantities, the essential lines carry a label of
the form :LABEL: which can be used to monitor these quantities during a SCF run.

The information is retrieved using the UNIX grep command or using the “Utils. o analyze” menu.

While the SCF cycle of TiC is running try to monitor e.g. the total energy (label :ENE) or the charge
distance (label :DIS). The calculation has converged, when the convergence criterion is met for
three subsequent iterations (compare the charge distance in the example).

For a detailed description of the various labels consult section 4.4.

3.10 Saving a calculation

Before you proceed to another calculation, you should save the results of the SCF-cycle with the
save lapw command, which is also described in detail in section 5.2.1. This can also be done from
the graphical user interface by choosing the “Utils. o save lapw” menu.

Save the result to this example under the name “TiC scf”.

You can now improve your calculation and check the convergence of the most important parame-
ters:
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I select a higher precision (2) and ”nodstart” in ”Execution o Initialize calc.” with ”Fast mode”.
I or increase RKMAX and GMAX in case.in1 and case.in2
I or increase the k-mesh with x kgen (“Execution o single program”)
I or choose a different exchange-correlation potential in case.in0

Then just execute another run lapw using “Execution o run SCF”.

3.11 Calculating properties

Once the SCF cycle has converged one can calculate various properties like Density of States (DOS),
band structure, Optical properties or X-ray spectra.

For the calculation of properties (which from now on will be called “Tasks”). We strongly encourage
the user to utilize the user interface, w2web. This user interface automatically supplies input file
templates and shows how to calculate the named properties on a step by step basis.

3.11.1 Electron density plots

Select “El. Dens.” from the “Tasks” menu and click on the buttons one by one (see figure 3.7):

Figure 3.7: Task “Electron Density Plots”

I The total charge density includes the Ti 3s and 3p states and the resulting density
around Ti would be very large and dominated by these semicore states. To get
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a “meaningful” picture of the chemical bonding effects one must remove these
states. Inspection of TiC.scf1 and TiC.scf2 should allow you to select an
EMIN value to eliminate the Ti 3s and 3p semicore states.

I Recalculate the valence density with EMIN=-1.0 to truncate Ti 3s and 3p (x lapw2
-emin -1.0). This is only possible, when you still have a valid TiC.vector file
on a tetrahedral mesh.

I Select a plane and plot the density in the (100) plane of TiC. When XCRYSDEN
is installed (for details see http://www.xcrysden.org/doc/wien.html), it
will be offered automatically and provides a convenient way to specify a plane
and create a colorful plot 3.8.

– Select 2D-plot
– Specify a resolution of 100 points (first line)
– Select a plane by selecting 3 atoms and define these 3 atoms by clicking on

them.
– Choose rectangular parallelogram and enlarge the rectangular selection by 0.5

(for all 4 margins, then update the display)
– calculate the density and produce a nice contour plot:
– choose “rainbow”-colors, activate all display-option buttens, and choose in

“Ranges” a smaller “highest rendered value”.
– Finally, use smaller spheres (pipe+ball display model) and thinner bonds

(Modify/Ball-Stick-ratio).

I Alternatively, without XCRYSDEN, edit TiC.in5 and choose the offered template
input file. To select the (100) plane for plotting specify the following input:

-1 -1 0 4 # origin of plot (x,y,z,denominator)
-1 3 0 4 # x-end of plot
3 -1 0 4 # y-end of plot

3 2 3 # x,y,z number of shells
100 100 # x, y plotting mesh, choose ratio similar to x,y length
RHO
ANG VAL NODEBUG
ORTHO

For a detailed description of input options consult section 8.14.3
I Calculate electron density (x lapw5)
I Plot output (using rhoplot), after the first preview select a range zmin=-0.5 to

zmax=2

Compare the result with the electron density plotted in the (100) plane (see figure 3.9). The pro-
gram gnuplot (public domain) must be installed on your computer. For more advanced graphics
use your favorite plotting package or specify other options in gnuplot (see rhoplot lapw how
gnuplot is called).

http://www.xcrysden.org/doc/wien.html
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Figure 3.8: Electron density of TiC in (100) plane using Xcrysden
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Figure 3.9: Electron density of TiC in (100) plane

3.11.2 Density of States (DOS)

Select “Density of States (DOS)” from the “Tasks” menu and click on the buttons one by one:

I The optional steps allow to select a larger energy window (unoccupied states or a
denser k-mesh).

I Calculate partial charges (”qtl’s”) using x lapw2 -qtl. (This is only possible,
when you still have a valid TiC.vector file on a tetrahedral mesh.)

I Create TiC.int, either using “configure TiC.int” or/and by “editing” the offered
template input file. Select: total DOS, Ti-d, Ti-deg , Ti-dt2g , C-s and C-p-like DOS.

TiC
-0.50 0.00200 1.500 0.003 EMIN, DE, EMAX, Gauss-broadening
6 NUMBER OF DOS-CASES
0 1 tot (atom,case,description)
1 4 Ti d
1 5 Ti eg
1 6 Ti t2g
2 2 C s
2 3 C p

For a detailed description of input options consult section 8.27.3
I Calculate DOS (x tetra).
I Preview output using “dosplot”

If you want to use the supplied plotting interface dosplot to preview the results, the program
gnuplot (public domain) must be installed on your computer.

The calculated DOS can be compared with figures 3.10 and 3.11. Together with the electron density
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Figure 3.10: Density of states of TiC

the partial DOS allows you to analyse the chemical bonding (covalency between Ti−deg and C−p,
non-bonding Ti− dt2g , charge transfer estimates,....)

Figure 3.11: Density of states of TiC
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3.11.3 X-ray spectra

Select “X-Ray Spectra” from the “Tasks menu” and click on the buttons one by one:

I Calculate partial charges (x lapw2 -qtl). This is only possible, when you still
have a valid TiC.vector file on a tetrahedral mesh. To reproduce this figure you
will have to increase the EMAX value in your TiC.in1 to 2.5 Ry and rerun x lapw1

I Edit TiC.inxs; choose the offered template. This template will calculate the LIII -
spectrum of the first atom (Ti in this example) in the energy range between -2 and
15 eV. For a detailed description of the contents of this input file refer to section
8.28.3.

I Calculate spectra
I Preview spectra

If you want to use the supplied plotting interface specplot to preview the results, the public domain
program gnuplot must be installed on your computer. The calculated TiC Ti-LIII -spectrum can be
compared with figure 3.12.

Figure 3.12: Ti LIII spectrum of TiC

3.11.4 Bandstructure

Select “Bandstructure” from the “Tasks” menu and click on the buttons one by one:

I Create the file TiC.klist band from the template in
$WIENROOT/SRC templates/fcc.klist. (To calculate a bandstructure a
special k-mesh along high symmetry directions is necessary. For a few crystal
structures template files are supplied in the SRC-directory, you can also use
XCRYSDEN (save it as xcrysden.klist) to generate a k-mesh or type in your own
mesh.

I Calculate Eigenvalues using the “-band” switch (which changes lapw1.def such
that the k-mesh is read from TiC.klist band and not from TiC.klist)
Note: When you want to calculate DOS, charge densities or spectra after this bandstruc-
ture, you must first recalculate the TiC.vector file using the “tetrahedral” k-mesh,
because the k-mesh for the band structure plots is not suitable for calculations of such
properties.
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I Edit TiC.insp: insert the correct Fermi energy (which can be found in the saved
scf-file) and specify plotting parameters. For comparison with figure 3.13 select
an energy-range from -13 to 8 eV.

I Calculate Bandstructure (x spaghetti).
I Preview Bandstructure (needs ghostscript installed).

If you want to preview the bandstructure, the program ghostview (public domain) must be in-
stalled on your computer. You can compare your calculated bandstructure with figure 3.13.

Figure 3.13: Bandstructure of TiC

3.11.5 Bandstructure with band character plotting / full lines

Select again “Bandstructure” from the “Tasks” menu. We assume that you have already done the
steps described in the previous section (generate TiC.klist band and x lapw1 -band).

I Calculate partial charges (x lapw2 -qtl -band)
Note: You have to calculate the partial charges for the new special k-mesh specified above
and cannot use the partial charges from the DOS calculation.

I Edit TiC.insp: insert the correct Fermi energy (same as before) and specify plot-
ting parameters. For ”band character plotting” (see figure 3.14) select ”line type
= dots” and jatom=1, jtype=6 and jsize=0.2 (in the last input line) to produce a
character plot of the Ti t2g-like character bands.

I Calculate Bandstructure (x spaghetti)
I Preview Bandstructure
I To plot the bandstructure with full lines, calculate the irreducible representations

with ”x irrep” and select ”lines” in case.insp.

If you have case.irrep* or case.qtl* files from previous runs which do not fit to the
present case.output1 file, you may get errors while running spaghetti. In this case
remove all case.irrep or case.qtl files.

You can compare your results with figure 3.14.
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Figure 3.14: Bandstructure of TiC, showing t2g-character bands of Ti in character plotting mode

3.11.6 Volume Optimization

Select “Optimize (V,c/a)” from the “Execution” menu. Setup the shell script optimize.job
script using x optimize and volume variations of -10, -5, 0, +5 and +10%. Then run the
optimize.job. When the job has finished, you should click on Plot and then preview the en-
ergy curve.

You should get an energy curve as in figure 3.15. On the screen you will find the fitting parameters
for the “equation of states” (Murnaghan, Birch-Murnaghan and the EOS2 equation, see sec. 9.13).
This information is also written to TiC.outputeos.

Figure 3.15: Energy vs. volume curve for TiC



30 CHAPTER 3. QUICK START

3.12 Setting up a new case

In order to setup a new case you need at least the following information:

I The lattice parameters (in Bohr or Ångstroms) and angles,
I the lattice type (primitive, face-centered, hexagonal,...) or spacegroup,
I the position of all equivalent and inequivalent atoms in fractions of the unit cell.
I Alternatively when you know the spacegroup only the inequivalent positions needs to be

given. The equivalent ones will be generated automatically.

Usually this information can be collected from the “International Tables of Crystallography” once
you know the space group, the Wyckoff position and the internal free coordinates.

3.12.1 Manually setting up a new case

Create case.struct

Create a new directory case in a desired place (do not use your $HOME-directory, but eg.
/̃WIEN2k, or /̃lapw ... and change into this directory.

A new case.struct file is never created by hand, but using some utilities. We recommend the
script makestruct lapw which will ask for the required input and create init.struct, which
you should copy to case.struct.

Alternatively, you can use cif2struct or xyz2struct to convert a “cif”, “txt”, “POSCAR” or
“xyz” file into the WIEN2k case.struct file. Check page 247 for more info on the specific file
formats.

You can also use the struct file from a similar case (eg. TiN from TiC) as pattern, but note, that
the automatic setting of proper R0-values is not guaranteed by that procedure and you should use
it only for VERY SIMILAR cases (elements). Change into the lapw subdirectory and proceed as
follows:

mkdir case new
cd case new
cp ../case old/case old.struct case new.struct

Now edit case new.struct (see section 4.3) as necessary (Note: this is a fixed formatted file, so
all values must remain at their proper columns). For AFM cases generate case new.inst using
instgen lapwi -ask.

Initialize the calculation

Run the script init lapw -b [-prec XX], which will setup adequate input parameters for the
desired precision (-prec 1 is the default).

Run scf calculation

run lapw [-cc 0.0001 -ec 0.00001 ...] performs an scf cycle until the desired conver-
gence has been reached. You can check the converence using:

grep :DIS case.scf or grep :ENE case.scf

and view the case.dayfile file. In case the scf stops after 40 cycles without convergence or you
want to converge with better criteria, simply rerun the run lapw command but add the -NI flag.
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All actions of this script are logged and apended in short in :log and for the last command in
detail in the file case.dayfile .

Save a calculation

Once the scf has finished and you are happy with the convergence, always save the calculation
with a meaningful name:

save lapw pbe prec-1 exp-vol

After doing some other calculations (precision, different lattice parameters, ...) you can always
come back using :

restore lapw pbe prec-1 exp-vol

3.12.2 Setting up a new case using w2web

Use the menu Session Mgmt. o change session of w2web to create a new session (enter the name of
the new session and click on “Create”). Then you should also create a new directory and “select”
it..

When you select “Execution o StructGen”, you have several choices:

You can just specify the number of non-equivalent atoms and a template file will be created. In
StructGen you simply specify the lattice (type or spacegroup), cell parameters and name and po-
sitions of atoms. When you “save file and clean up” the new case.struct file and the case.inst
file are created automatically.

Alternatively, you can use cif2struct or xyz2struct to convert a “cif”, “txt” or “xyz” file
into the WIEN2k case.struct file. Check page 247 for more info on the specific file formats.

For more information on the StructGen refer to page 244.
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4 File structure and program flow
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(for naming conventions see section 3.1)

4.1 Flow of input and output files

Each program is started with (at least) one command line argument, e.g.

programX programX.def

in which the arguments specifies a filename, in which FORTRAN I/O units are connected to unix
filenames. (See examples at specific programs). These “def“-files are generated automatically
when the standard WIEN2k scripts x, init lapw or run lapw are used, but may be tailored by
hand for special applications. Using the option

x program -d

a def-file can be created without running the program. In addition each program reads/writes the
following files:

case.struct a “master“ input file, which is described below (Section 4.3)
case.inX a specific input file, where X labels the program (see def-files for each program in chapter

6).
case.outputX an output file

The programs of the SCF cycle (see figure 4.1) write the following files:

case.scfX a file containing only the most significant output (see description below).
program.error error report file, should be empty after successful completion of a program (see

chapter 6)

35
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Figure 4.1: Data flow during a SCF cycle (programX.def, case.struct, case.inX, case.outputX and
optional files are omitted)
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The following tables describe input and output files for the initialization programs nn, sgroup,
symmetry, lstart, kgen, dstart (table 4.1), the utility programs tetra, irrep, spaghetti,
aim, lapw7, elnes, lapw3, lapw5, xspec, optic, joint, kram, optimize and mini (table
4.2) as well as for a SCF cycle of a non-spin-polarized case (table 4.2). Optional input and output
files are used only if present in the respective case subdirectory or requested/generated by an
input switch. The connection between FORTRAN units and filenames are defined in the respective
programX.def files. The data flow is illustrated in Fig. 4.1.

program needs generates
necessary optional necessary optional

NN nn.def case.outputnn case.struct nn
case.struct

SGROUP case.struct case.outputsgroup case.struct sgroup

SYMMETRY symmetry.def case.outputs case.struct st
case.struct case.in2 st case.in2 st

LSTART lstart.def case.outputst case.rspup/dn
case.struct case.rsp case.rsigma
case.inst case.in0 st case.vsp st

case.in1 st case.vspdn st
case.in2 st case.sigma
case.inc st case.potup/dn
case.inm st case.sptup/dn
case.inm restart case.tspup/dn

KGEN kgen.def case.ksym case.outputkgen
case.struct case.klist

case.kgen
DSTART dstart.def case.indstart case.outputd new super.clmsum(up)

case.struct case.tsp(up) case.clmsum(up) case.clmsc(up)
case.rsp(up) case.inpd dstart.error case.r2v half(dn)
case.in0 case.in0 std case.tausum(up)
case.in1
case.in2

Table 4.1: Input and output files of init programs

program needs generates
necessary optional necessary optional

SPAGHETTI spaghetti.def case.qtl case.spaghetti ps case.spaghetti ene
case.insp case.outputso case.outputsp
case.struct case.irrep case.band.agr
case.output1

TETRA tetra.def case.outputt
case.int case.qtl case.dos1(2,3)
case.kgen case.energy case.dos1ev(1,2,3)

case.scf2
LAPW3 lapw3.def case.output3

case.struct case.rho
case.in2
case.clmsum case.clmsum

LAPW5 lapw5.def case.sigma case.output5 case.rho.oned
case.struct case.rho
case.in5
case.clmval

XSPEC xspec.def case.outputx case.coredens
case.inc case.dos1ev
case.int case.xspec
case.vsp case.txspec
case.struct case.m1
case.qtl case.m2

OPTIC optic.def case.outputop case.symmat1
case.struct case.symmat case.symmat2
case.mat diag
case.inop
case.vsp
case.vector

JOINT joint.def case.outputjoint case.sigma intra
case.injoint case.joint case.intra

continued on next page
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case.struct
case.kgen
case.weight
case.symmat
case.mat diag

KRAM kram.def case.epsilon case.eloss
case.inkram case.sigmak case.sumrules
case.joint

OPTIMIZE case.struct case initial.struct optimize.job case vol xxxxx.struct
case c/a xxxxx.struct

MINI mini.def case.scf mini case.outputM case.clmsum inter
case.inM case.tmpM case.tmpM1
case.finM case.constraint case.struct1
case.scf case.clmhist case.scf mini1
case.struct .min hess .minrestart

IRREP case.struct case.outputirrep
case.vector case.irrep

AIM case.struct case.outputaim case.crit
case.clmsum case.surf
case.inaim

LAPW7 case.struct case.output7 case.abc
case.vector case.grid
case.in7 case.psink
case.vsp case.rho

QTL case.struct case.outputq
case.vector case.qtl
case.inq
case.vsp

Table 4.2: Input and output files of utility programs

program needs generates
necessary optional necessary optional

LAPW0 lapw0.def case.clmup/dn case.output0 case.r2v
case.struct case.vrespsum/up/dn case.scf0 case.vcoul
case.in0(*) case.inm case.vsp(up/dn) case.vtotal
case.clmsum case.r2v half(dn) case.vns(up/dn) case.eeceup/dn

case.tausum/up/dn case.vtau(up)
case.grr case.vspmgga
case.in0 loc vsp
case.clmcor(up)
case.taucor(up)

ORB orb.def case.energy case.outputorb case.br1orb
case.struct case.vorb old case.scforb case.br2orb
case.inorb case.vorb
case.dmat orb.error
case.vsp

LAPW1 lapw1.def case.vns case.output1 case.nsh(s)
case.struct case.vorb case.scf1 case.nmat only
case.in1 case.vector.old case.vector
case.vsp case.vtau case.energy
case.klist case.vspmgga

LAPWSO lapwso.def case.vorb case.vectorso
case.struct case.outputso
case.inso case.scfso
case.in1 case.energyso
case.vector case.normso
case.vsp
case.vns
case.energy

LAPW2 lapw2.def case.kgen case.output2 case.qtl
case.struct case.nsh case.scf2 case.weight
case.in2 case.weight case.clmval case.help03*
case.vector case.recprlist case.vrespval
case.vsp case.almblm
case.energy case.radwf

case.dmatup/dn
case.tauval

LAPWDM lapwdm.def case.inso case.outputdm
case.struct case.scfdm

continued on next page
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case.indm case.dmat
case.vector lapwdm.error
case.vsp
case.weight
case.energy

SUMPARA case.struct case.scf2p case.outputsum
case.clmval case.clmval

case.scf2
LCORE lcore.def case.vns case.outputc case.corewf

case.struct case.scfc case.taucor
case.inc case.clmcor
case.vsp lcore.error

After LCORE the case.scfX files are appended to case.scf and the
case.clmsum file is renamed to case.clmsum old (see run lapw)

MIXER mixer.def case.clmsum old case.outputm case.broyd*
case.struct case.clmsc case.scfm case.tausum(up)
case.inm case.clmcor case.clmsum
case.clmval case.scf mixer.error
case.inc case.broyd1

case.broyd2
case.dmat*
case.vorb*
case.inM
case.constraint

After MIXER the file case.scfm is appended to case.scf, so that after an iteration is
completed, the two essential files are case.clmsum and case.scf.

Table 4.3: Input and output files of main programs in an SCF cycle

4.2 Description of general input/output files

In the following section the content of the (non-trivial) output files is described:

case.almblm Contains the Alm, Blm, Clm coefficients of the wavefunctions (generated optional by
lapw2).

case.band.agr A xmgrace file with the energy bandstructure plot generated by spaghetti.
case.broydX Contains the charge density of previous iterations if you use Broyden’s method for

mixing. They are removed when using save lapw. They should be removed by hand when
calculational parameters (RKMAX, kmesh, . . . ) have been changed, or the calculation crashed
due to a too large mixing and are restarted by using a new density generated by dstart.

case.clmcor Contains the core charge density (as σ(r) = 4πr2ρ(r) and has only a spherical part).
In spin-polarized calculations two files case.clmcorup and case.clmcordn are used instead.

case.clmsc Contains the semi-core charge density in a 2-window calculation, which is no longer
recommended. In spin-polarized calculations two files are used instead: case.clmscup and
case.clmscdn.

case.clmsum Contains the total charge density in the lattice harmonics representation and as
Fourier coefficients. (The LM=0,0 term is given as σ(r) = 4πr2ρ(r), the others as r2ρLM (r);
suitable for generating electron density plots using lapw5 when the TOT-switch is set,
(see section 8.14). In spin-polarized calculations two additional files case.clmup and
case.clmdn contain the spin densities. Generated by dstart or mixer.

case.clmval Contains the valence charge density as r2ρLM (r); suitable for generating valence elec-
tron density plots using lapw5 when the VAL-switch is set, (see 8.14). In spin-polarized
calculations two files case.clmvalup and case.clmvaldn are used instead.

case.dmatup/dn Contains the density matrix generated by lapw2or lapwdm for LDA+U, OP or
onsite-Hybrid-DFT calculations.

case.dosX Contains the density of states (states/Ry) and corresponding energy (in Ry at the inter-
nal energy scale) generated by tetra. X can be 1-3. Additional files case.dosXev contain
the DOS in (states/eV) and the energy in eV with respect to EF.

case.dosrnXev Contains the renormalized PDOS (without interstitial) generated by x pes for
plotting with dosplot2 -ren
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case.energy Contains the eigenvalues (in Ry) of all k-points calculated in lapw1. In spin-polarized
calculations two files case.energyup and case.energydn are used instead. lapwso gen-
erates case.energyso.

case.help03X Contains eigenvalues and partial charges for atom number X.
case.kgen This file contains the indices of the tetrahedra in terms of the list of k-points. It is used

in lapw2 (if EFMOD switch in case.in2 is set to TETRA, see 7.9.3) and in tetra.
case.klist This file contains a list of k-points in the BZ on a (special k-point) tetrahedral mesh. It is

generated in kgen.
case.pesX Contains the photoelectron spectra from pes
case.qtl Contains eigenvalues and corresponding partial charges (bandwise) in a form suitable for

tetra and band structure plots with “band character”. The decomposition of these charges
is controlled by ISPLIT in case.struct.

case.radwf Contains the radial basis functions inside spheres (generated optional by lapw2).
case.rho Contains the electron densities (wave function) on a grid in a specified plane generated

by lapw5 (lapw7. This file can be used as input for your favorite contour or 3D plotting
program.

case.rsp Contains the atomic densities generated by lstart. They are used by dstart to gener-
ate a first crystalline density (case.clmsum).

case.r2v Contains the exchange potential (in the lattice harmonics representation as r2 ∗ VLM (r)
and as Fourier coefficients) in a form suitable for plotting with lapw5.

case.scf mini Contains the last scf-iteration of each individual time (geometry) step during a struc-
tural minimization using mini. Thus this file contains a complete history of properties (en-
ergy, forces, positions) during a structural minimization.

case.sigma Contains the atomic densities for those states with a “P” in case.inst. Generated in
lstart and used for difference densities in lapw5.

case.spaghetti ps A ps file with the energy bandstructure plot generated by spaghetti.
case.sptup/dn Contains r and V (V ∗ r, V ∗ r2) from lstart for plotting potentials of free atoms.
case.tausum/up/dn Contains the crystalline kinetic energy densities (slater form –∇ψ∗ · ∇ψ)
case.tspup/dn Contains the atomic kinetic energy densities (slater form –∇ψ∗ · ∇ψ)
case.symmat Contains the momentum matrix elements between bands i,j. Created by optic and

used in joint.
case.vcoul Contains the Coulomb potential (Ry) (in the lattice harmonics representation as r2 ∗

VLM (r) and as Fourier coefficients) in a form suitable for plotting with lapw5.
case.vorb Contains the orbital potential (in Ry) generated by orb for LDA+U or onsite-hybrid-

DFT calculations in form of a (2l+1,2l+1) matrix.
case.vtotal Contains the total potential (Ry) (in the lattice harmonics representation as r2 ∗ VLM (r)

and as Fourier coefficients) in a form suitable for plotting with lapw5.
case.vector Binary file, contains the eigenvalues and eigenvectors of all k-points calculated in

lapw1. In spin-polarized calculations two files case.vectorup and case.vectordn are
used instead. lapwso generates case.vectorso.

case.vns Contains the non-spherical part of the total potential V. Inside the sphere the radial co-
efficients of the lattice harmonics representation are listed (for L greater than 0), while for
the interstitial region the reanalyzed Fourier coefficients are given (see equ. (2.10)). In spin-
polarized calculations two files case.vnsup and case.vnsdn are used instead.

case.vorbup/dn Contains the orbital dependent part of the potential in LDA+U, OP or Hybrid-
DFT calculations. Generated in orb, used in lapw1.

case.vsp Contains the spherical part of the total potential V (bohr.Ry) stored as r ∗ V (thus the first
values should be close to −2 ∗ Z). In spin-polarized calculations two files case.vspup and
case.vspdn are used instead.

case.vspmgga Like above, but it contains the spherical part of the total potential for a gKS MGGA
potential.
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4.3 The “master input“ file case.struct

The file case.struct defines the structure and is the main input file used in all programs. We
provide several examples in the subdirectory

example struct file

If you are using the “Struct Generator” from the graphical user interface w2web, or the
makestruct lapw utility, you don’t have to bother with this file directly, but generate it by speci-
fying the relevant data in a mask. Alternatively, the utilities cif2struct or xyz2struct convert
the corresponding cif, POSCAR or xyz files to the WIEN2k-format.

However, the description of the fields of this master input file can be found here.

Note: If you are changing this file manually, please note that this is a formatted file and the proper column
positions of the characters are important! Use REPLACE instead of DELETE and INSERT during edit!
Also some parameters are usually element-specifically chosen (R0)

We start the description of this file with an abridged example for rutile TiO2 (adding line numbers):

--------------------- top of file ---------------------line #
Titaniumdioxide TiO2 (rutile): u=0.305 1
P LATTICE,NONEQUIV. ATOMS 2 2
MODE OF CALC=RELA 3
8.6817500 8.6817500 5.5916100 90. 90. 90. 4
ATOM -1: X= 0.0000000 Y= 0.0000000 Z= 0.0000000 5

MULT= 2 ISPLIT= 8 6
ATOM -1: X= 0.5000000 Y= 0.5000000 Z= 0.5000000
Titanium NPT= 781 R0=.000022391 RMT=2.00000000 Z:22.0 7
LOCAL ROT MATRIX: -.7071068 0.7071068 0.0000000 8

0.7071068 0.7071068 0.0000000 9
0.0000000 0.0000000 1.0000000 10

ATOM -2: X= 0.3050000 Y= 0.3050000 Z= 0.0000000
MULT= 4 ISPLIT= 8

ATOM -2: X= 0.6950000 Y= 0.6950000 Z= 0.0000000
ATOM -2: X= 0.8050000 Y= 0.1950000 Z= 0.5000000
ATOM -2: X= 0.1950000 Y= 0.8050000 Z= 0.5000000
Oxygen NPT= 781 R0=.000017913 RMT=1.60000000 Z: 8.0
LOCAL ROT MATRIX: 0.0000000 -.7071068 0.7071068

0.0000000 0.7071068 0.7071068
1.0000000 0.0000000 0.0000000

16 SYMMETRY OPERATIONS: 11
1 0 0 0.00 12
0 1 0 0.00 13
0 0 1 0.00 14

1 15
1 0 0 0.00
0 1 0 0.00
0 0-1 0.00

2
........

15
0 1 0 0.50
-1 0 0 0.50
0 0 1 0.50

16
------------------ bottom of file ---------------------------

Interpretive comments on this file are as follows.

line 1: format (A80)
title (compound)

line 2: format (A4,23X,I3)
lattice type, NAT
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P all primitive lattices except hexagonal [a sin(γ′) sin(β), a cos(γ′) sin(β), (a cos(β))], [0, b
sin(α), b cos(α)], [0, 0, c]

F face-centered [0, b/2, c/2], [a/2, 0, c/2], [a/2, b/2, 0]
B body-centered [-a/2, b/2, c/2],[a/2, -b/2, c/2], [a/2, b/2, -c/2]
CXY C-base-centered (orthorhombic only) [a/2, -b/2, 0], [a/2, b/2, 0], [0, 0, c]
CYZ A-base-centered (orthorhombic only) [a, 0, 0], [0, -b/2, c/2], [0, b/2, c/2]
CXZ B-base-centered (orthorh. and monoclinic

symmetry)
[a sin(γ)/2, a cos(γ)/2, -c/2], [0, b, 0], [a sin(γ)/2, a
cos(γ)/2, c/2]

R rhombohedral [a/
√
3/2, -a/2, c/3],[a/

√
3/2, a/2, c/3],[-a/

√
3, 0, c/3]

H hexagonal [
√
3a/2, -a/2, 0],[0, a, 0],[0, 0, c]

Table 4.4: Lattice type, description and bravais matrix used in WIEN2k. The angle γ′ is defined via
cos(γ) = cos(γ′) sin(α) sin(β) + cos(β) cos(α)

lattice type as defined in table 4.4. For centered monoclinic lattices only the CXZ setting
is supported and the monoclinic angle must be gamma. Possibly you have
to transform a given spacegroup setting into one supported in WIEN2k (for
instance for SG #12 we need (B112/m) or (B2/m11) setting and not (C122/m1)
or (C2/m11) (it depends on your starting setting, but the final setting must have
a monoclinic angle gamma); for SG #15 we need (B2/b) or one of the alternative
B settings, but not one of the many others) using the Bilbao crystallographic
server (http://www.cryst.ehu.es/; “structure utilities”; SETSTRU)

NAT number of inequivalent atoms in the unit cell

line 3: format (13X,A4)
mode

RELA fully relativistic core and scalar relativistic valence
NREL non-relativistic calculation

line 4: format (6F10.6)
a, b, c, α, β, γ

a, b, c unit cell parameters (in a.u., 1 a.u. = 0.529177 Å). In face- or body-centered
structures the non-primitive (cubic) lattice constant, for rhombohedral (R) lat-
tices the hexagonal lattice constants must be specified. (The following may help
you to convert between hexagonal and rhombohedral specifications:
ahex = 2cos(π−αrhomb

2
)arhomb

chex = 3
√
a2rhomb −

1
3
a2hex

and (for fcc-like lattices) arhomb = acubic/
√
2

α, β, γ angles between unit axis (if omitted, 90◦ is set as default). Set it only for P and
CXZ lattices

line 5: format (4X,I4,4X,F10.8,3X,F10.8,3X,F10.8)
atom-index, x, y, z

atom-
index

running index for inequivalent atoms

positive in case of cubic symmetry
negative for non-cubic symmetry
this is set automatically using symmetry

x,y,z position of atom in internal units, i.e. as positive fractions of unit cell parame-
ters. (0 ≤ x ≤ 1; the positions in the unit cell are consistent with the convention
used in the International Tables of Crystallography [Tab, 1964]. In face- (body-)
centered structures only one of four (two) atoms must be given, eg. in Fm3m
position 8c is specified with 0.25, 0.25, 0.25 and .75, 0.75, 0.75). For R lattice
use rhombohedral coordinates. (To convert from hexagonal into rhombohedral
coordinates use the auxiliary program hex2rhomb, which can be called at a
command-line:

~Xortho = ~Xhex

 0 1 0√
3

2
−1
2

0
0 0 1


~Xrhomb = ~Xortho

 1√
3

1√
3

−2√
3

−1 1 0
1 1 1


line 6: format (15X,I2,17X,I2)

multiplicity, isplit

multiplicity number of equivalent atoms of this kind

http://www.cryst.ehu.es/
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isplit this is just an output-option and is used to specify the decomposition of the
lm-like charges into irreducible representations, useful for interpretation in
case.qtl). This parameter is automatically set by symmetry:

0 no split of l-like charge
1 p-z, (p-x, p-y) e.g.:hcp
2 e-g, t-2g of d-electrons e.g.:cubic
3 d-z2, (d-xy,d-x2y2), (d-xz,dyz) e.g.:hcp
4 combining option 1 and 3 e.g.:hcp
5 all d symmetries separate
6 all p symmetries separate
8 combining option 5 and 6
-2 d-z2, d-x2y2, d-xy, (d-xz,d-yz)
88 split lm like charges (for old telnes, not necessary anymore)
99 calculate cross-terms (for old telnes, not necessary anymore)

>>>: line 5 must now be repeated MULT-1 times for the other positions of each equivalent atom according
to the Wyckoff position in [Tab, 1964].

line 7: format (A10,5X,I5,5X,F10.8,5X,F10.5,5X,F10.5)
name of atom, NPT, R0, RMT, Z

name of
atom

Use the chemical symbol. Positions 3-10 for further labeling of nonequivalent
atoms (use a number in position 3)

NPT number of radial mesh points (381 gives a good mesh for LDA calculations,
but for GGA twice as many points are recommended; always use an odd number
of mesh points!) the radial mesh is given on a logarithmic scale: r(n) = R0 ∗
e[(n−1)∗DX]

R0 first radial mesh point (typically between 0.0005 and 0.00005, smaller for heavy
elements, bigger for light ones; a struct-file generated by w2web will have
proper R0 values.)

RMT atomic sphere radius (muffin-tin radius), can easily be estimated after running
nn (see 6.1) and are set automatically with setrmt lapw see 5.2.5). The follow-
ing guidelines will be given here: Choose spheres as large as possible as this
will save MUCH computer time. But: Use identical radii within a series of cal-
culations (i.e. when you want to compare total energies) — therefore consider
first how close the atoms may possibly come later on (volume or geometry op-
timization); do NOT make the spheres too different (even when the geometry
would permit it), instead use the largest spheres for f-electron atoms, 10-20 %
smaller ones for d-elements and again 10-20 % smaller for sp-elements; H is a
special case, you may choose it much smaller (e.g. 0.6 and 1.2 for H and C) and
systems containing H need a much smaller RKMAX value (3-5) in case.in1.

Z atomic number

line 8-10: format (20X,3F10.7)

ROTLOC local rotation matrix (always in an orthogonal coordinate system). Transforms
the global coordinate system (of the unit cell) into the local at the given atomic
site as required by point group symmetry (see in the INPUT-Section 7.9.3 of
LAPW2). SYMMETRY calculates the point group symmetry and determines
ROTLOC automatically. Note, that a proper ROTLOC is required, if the LM
values generated by SYMMETRY are used. A more detailed description with
several examples is given in the appendix A and sec. 10.3

>>>: lines 5 thru 10 must be repeated for each inequivalent atom
line 11: format (I4)

nsym number of symmetry operations of space group (see [Tab, 1964])
If nsym is set to zero, the symmetry operations will be generated automatically
by SYMMETRY.
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line 12-14: format (3I2,F10.7)
matrix, tau (as listed in [Tab, 1964])

matrix matrix representation of (space group) symmetry operation
tau non-primitive translation vector

line 15: format (I8)
index of symmetry operation specified above

>>>: lines 12 thru 15 must be repeated for all other symmetry operations

line 16: free format (optional)
after a line “Precise positions”, a list of all atomic positions can follow with full machine precision.
These coordinates are written by mixer if one performs a “MSR1a” structure optimization and they
will be used instead of the truncated numbers read above (only if they “agree”, but not if one modifies
them by hand such that they differ more significantly.

4.4 The “history“ file case.scf

During the self-consistent field (SCF) cycle the essential data are appended to the file case.scf
in order to generate a summary of previous iterations. For an easier retrieval of certain quantities
the essential lines are labeled with :LABEL:, which can be used to monitor these quantities during
self-consistency as explained below. The most important :LABELs are

:ENE total energy (Ry). If there is a “WARNING” mentioned, check :WAR
:WAR contains some warnings indicating that there might be a problem with your calculations.

Usually these problems are not fatal, but may influence the accuracy. You should check
the calculation when the warning also appears in the last cycle.

:INFO indicates a ”unusual event”, that the code has encountered. Usually only for information.
:DIS charge distance (in e−) between last 2 iterations (

∫
|ρn − ρn−1|dr). Good convergence

criterium.
:STRESS GPa00x (x=1,3), Stresstensor in GPa, only complete, if ”total” is printed on the right side.
:FER Fermi energy (in Ry at internal E-scale) and Fermi-method
:GAP energy gap (for insulators). Please note, this value will only be correct, if the VBM/CBM

are in your k-mesh. (Coarse “shifted” k-meshes do not contain tha Gamma-point and the
quoted gap might be significantly larger than the real one !!)

:FORxxx force on atom xxx in mRy/bohr (in the local (for each atom) cartesian coordinate system)
:FGLxxx force on atom xxx in mRy/bohr (in the global coordinate system of the unit cell (in the

same way as the atomic positions are specified, depends on the lattice. Only complete
when ”total” is printed on the right side.))

:FR in MSR1a mode prints information about the remaining size of the forces and whether it
will/has switched to MSR1 mode.

:APOSxxx atomic positions and their changes during MSR1a optimization
:DTOxx total difference charge density for atom xx between last 2 iterations
:CTOxx total charge (in e−) in sphere xx (mixed after MIXER)
:NTOxx total charge in sphere xx (new (not mixed) from LAPW2+LCORE)
:QTLxx partial charges in sphere xx
:EPLxx l-like partial charges and “mean energies” in lower (semicore) energy window for atom

xx. Used as energy parameters in case.in1 for next iteration
:EPHxx l-like partial charges and “mean energies” in higher (valence) energy window for atom xx.

Used as energy parameters in case.in1 for next iteration
:EIG eigenvalues (Ry) of first k-point
:BAN band ranges (emin - emax of a certain band, Ry) and occupation (electrons)
:EFGxx Electric field gradient (EFG) Vzz for atom xx (related to the quadrupole splitting measured

by NMR or Mössbauer spectroscopy)
:ETAxx Asymmetry parameter of EFG for atom xx
:RTOxx Density for atom xx at the nucleus (at first radial mesh point, related to Mössbauer Isomer

shifts)
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:VZERO Gives the total, Coulomb and xc-potential (Ry) at z=0 and z=0.5 (meaningfull only for ithe
workfunction (VZERO - EF) in slab calculations)

:1S xxx: 1s core eigenvalue of atom xxx. Similar labels for other core states.

To check to which type of calculation a scf file corresponds use:

:POT Exchange-correlation potential used in this calculation
:LAT Lattice parameters in this calculation (bohr)
:VOL Volume of the unit cell
:IFFT FFT mesh and enhncement factor for xc-potential/energy in interstital
:POSxx Atomic positions for atom xx (as in case.struct)
:RKM Actual matrix size and resulting RKmax
:LMAX-WF max angular momentum for spherical and nonspherical Hamilton matrix elements inside

sphere
:KPT number of k-points in IBZ
:GMA GMAX of density and potential Fourier expansion
:CINT Core charge, should be very close to an integer (except for core-hole calculations)
:NEC normalization check of electronic charge densities. If a significant amount of electrons

is missing, one might have core states, whose charge density is not completely confined
within the respective atomic sphere. In such a case the corresponding states should be
treated as band states (using LOs).

For spin-polarized calculations:

:MMTOT Total spin magnetic moment/cell
:MMIxxx Spin magnetic moment of atom xxx. Note, that this value depends on RMT.
:CUPxx spin-up charge (mixed) in sphere xx
:CDNxx spin-dn charge (mixed) in sphere xx
:NUPxx spin-up charge (new, from lapw2+lcore) in sphere xx
:NDNxx spin-dn charge (new, from lapw2+lcore) in sphere xx
:ORBxx Orbital magnetic moment of atom xx (needs SO calculations and LAPWDM).
:HFFxx Hyperfine field of atom xx (in kGauss).

During an scf cycle you would mainly monitor convergence parameters like :ENE, :DIS, :FGL, :FR
(for MSR1a optimization of atomic positions). You can also use the scfmonitor lapw script to
monitor these quantities graphically, see sec.5.2.10.

If a calculation crashes, :WAR may give some hints, but also check for sudden changes or large
oszillations in :NTO, :CTO, :FER or :BAN.

In spin-polarized calculations :MMT and :MMI are crucial quantities which could be used as con-
vergence criterion.

If you are interested on a certain property (:GAP, :EFG, :HFF, :VZERO, ...) monitor it in particular
to be sure that they are converged.

It is always best to monitor several quantities, because often one quantity is converged, while an-
other still changes from iteration to iteration. The script run lapw has three different convergence
criteria built in, namely the total energy, the atomic forces and the charge distance (see 5.1.3, 5.1.4).

We recommend the use of UNIX commands like :

grep :ENE case.scf or the scfmonitor or use “Analysis” from w2web

for monitoring such quantities.

You may define an alias for convenience (eg. for grep -i, so that your search is not case sensitive;
see sec. 11.2).
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We provide also a csh-script grepline lapw to get a quantity from several scf-files simultane-
ously (sec. 5.2.9 and 5.3).

4.5 Flow of programs

The WIEN2k package consists of several independent programs which are linked via C-SHELL
SCRIPTS described below.

The flow and usage of the different programs is illustrated in the following diagram (Fig. 4.2):

The initialization consists of running a series of small auxiliary programs, which generates the
inputs for the main programs. One starts in the respective case/ subdirectory and defines the
structure in case.struct (see 4.3). The initialization can be invoked by the script init lapw
(see sec. 3.7 and 5.1.3), and consists of running:

SETRMT a perl-program which helps to select proper RMT values
NN a program which lists the nearest neighbor distances up to a specified limit (defined by a

distance factor f) and thus helps to determine the atomic sphere radii. In addition it is a
very useful additional check of your case.struct file (equivalency of atoms)

SGROUP determines the spacegroup of the structure defined in your case.struct file.
SYMMETRY generates from a raw case.struct file the space group symmetry operations, deter-

mines the point group of the individual atomic sites, generates the LM expansion for the
lattice harmonics and determines the local rotation matrices.

LSTART generates free atomic densities and determines how the different orbitals are treated in
the band structure calculations (i.e. as core or band states, with or without local orbitals,. . . ).

KGEN generates a k-mesh in the irreducible part of the BZ.
DSTART generates a starting density for the scf cycle by a superposition of atomic densities

generated in LSTART.

Then a self-consistency cycle is initiated and repeated until convergence criteria are met (see 3.8
and 5.1.4). This cycle can be invoked with a script run lapw, and consists of the following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 (BANDS) calculates valence bands (eigenvalues and eigenvectors)
LAPW2 (RHO) computes valence densities from eigenvectors
LCORE computes core states and densities
MIXER mixes input and output densities

4.5.1 Core, semi-core and valence states

In many cases it is desirable to distinguish three types of electronic states, namely core, semi-core
and valence states. For example titanium has core (1s, 2s, 2p), semi-core (3s, 3p) and valence (3d,
4s, 4p) states. In our definition core states are only those whose charge is entirely confined inside
the corresponding atomic sphere. They are deep in energy, e.g., more than 7-10 Ry below the Fermi
energy. Semi-core states lie high enough in energy (between about 1 and 7 Ry below the Fermi
energy), so that their charge is no longer completely confined inside the atomic sphere, but has a
few percent outside the sphere. Valence states are energetically the highest (occupied) states and
always have a significant amount of charge outside the spheres.

The energy cut-off specified in lstart during init lapw (usually -6.0 Ry) defines the separation
into core- and band-states (the latter contain both, semicore and valence). If a system has atoms
with semi-core states, then the best way to treat them is with “local orbitals“, an extension of the
usual LAPW basis. An input for such a basis set will be generated automatically. (Additional LOs
can also be used for valence states which have a strong variation of their radial wavefunctions with
energy (e.g. d states in TM compounds) to improve the quality of the basis set, i.e. to go beyond
the simple linearization).
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4.5.2 Spin-polarized calculation

For magnetic systems spin-polarized calculations can be performed. In such a case some steps are
done for spin-up and spin-down electrons separately and the script runsp lapw consists of the
following steps:

LAPW0 (POTENTIAL) generates potential from density
LAPW1 -up (BANDS) calculates valence bands for spin-up electrons
LAPW1 -dn (BANDS) calculates valence bands for spin-down electrons
LAPW2 -up (RHO) computes valence densities for spin-up electrons
LAPW2 -dn (RHO) computes valence densities for spin-down electrons
LCORE -up computes core states and densities for spin-up electrons
LCORE -dn computes core states and densities for spin-down electrons
MIXER mixes input and output densities

The use of spin-polarized calculations is illustrated for fcc Ni (section 10.2), one of the test cases
provided in the WIEN2k package.

4.5.3 Fixed-spin-moment (FSM) calculations

Using the script runfsm lapw -m XX it is possible to constrain the total spin magnetic moment
per unit cell to a fixed value XX and thus force a particular ferromagnetic solution (which may
not correspond to the equillibrium). This is particularly useful for systems with several metastable
(non-) magnetic solutions, where conventional spin-polarized calculation would not converge or
the solution may depend on the starting density. Additional SO-interaction is not supported.

The FSM method can also be useful to calculate the ground state magnetic moment of a particular
energy functional (eg. a MGGA) in a non self-consistent way. In such a case, a GGA potential vxc
like PBE has to be chosen for the self-consistent calculations, but the total energy is evaluated for
the various selected moments. This may introduce some error, but probably very small in most
cases.

Please note, that once runfsm lapw has finished, only case.vectordn is ok, but
case.vectorup is NOT the proper up-spin vector and MUST NOT be used for the calculations
of QTLs (and DOS). It must be regenerated by x lapw1 -up (see also the comments for iterative
diagonalization in section 5.2.22).

4.5.4 Staggered field inside atomic spheres to vary the magnetic moment

A simple way to increase or decrease the magnetic moment is to apply a staggered field. The spin-
up and spin-down potentials in the Kohn-Sham equations are shifted in opposite directions. For
instance, in the case of antiferromagnetism, adding negative and positive shifts inside the atomic
spheres for the majority and minority spin electrons, respectively, will increase the magnetic mo-
ment around the atoms.

This method is especially useful to study the magnetism with functionals,which are not imple-
mented self-consistently, by searching for the magnetic configuration or magnitude of the moments
that leads to the most negative total energy. This would be approximately equivalent to a self-
consistent calculation with the corresponding MGGA potential. As in the case of the FSM method
(section 4.5.3), a GGA potential like PBE has to be chosen for the self-consistent calculations.

To turn on the staggered field, the keyword ”STAGFIELD” has to be specified at the beginning of
the 4th line in case.in0. The atoms and the value of the shift (typically in the range 0.01-0.1 Ry)
are specified at the 5th and following lines in case.in0 (see section 7.1.3 for details). The specified
shift is the one added to the spin-up potential (the same shift but with opposite sign is applied to
the spin-down potential). No shift can be applied in the interstitial region.
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4.5.5 Antiferromagnetic (AFM) calculations

Several considerations are necessary, when you want to perform an AFM calculation. Please have
also a look into $WIENROOT/SRC afminput/afminput test.

I You must construct a unit cell which allows for the desired AF ordering. For example for
bcc Cr you must select a “P” lattice and specify both atoms, Cr1 at (0,0,0) and Cr2 at (.5,.5,.5),
corresponding to a CsCl structure. Note, that it is important to label the two Cr atoms with
“Cr1” and “Cr2”, since only then the symmetry programs can detect that those atoms should
be different (although they have the same Z). If sgroup has interchanged some axis, try to undo
these changes, since afminput may not properly find the correct symmetry operations in such a case.

I When you generate case.inst you must specify the correct magnetic order and flip the
spin of the AF atoms (i.e. invert the spin up and dn occupation numbers). In addition you
should set a zero moment (identical spin up and dn occupations) for all “non-magnetic”
atoms. This can be done conveniently using instgen lapw -ask or during “initialization”
using w2web.

I Now you can run either a “normal” spinpolarized initialization (without AFM option) and
runsp lapw or:

I Create a struct file of the non-magnetic (or ferro-magnetic) supergroup (run init lapw up to
lstart). Name it case.struct supergroup. (For example for bcc Cr, this would be a struct
file with the ordinary cubic lattice parameters, “B” type lattice and just one Cr at (0,0,0).)

I Run init lapw. At the end AFMINPUT creates an input file for the program CLMCOPY.
Depending on the presence of case.struct supergroup and the specific symmetry it
may/may not ask you to supply a symmetry operation/nonprimitive translation (see Sect.
9.3 .

I Run runafm lapw. This script calls LAPW1 and LAPW2 only for spin-up but the corre-
sponding spin-dn density is created by CLMCOPY according to the rules defined during
initialization. This reduces the required cpu time by a factor of 2 (and in addition the scf
cycle is much more stable).

I It is highly recommended that you save your work (save lapw) and check the results by
continuing with a regular runsp lapw. If nothing changes (E-tot and other properties), then
you are ok, otherwise make sure the scf calculation is well converged (-cc 0.0001 or better).
Possibly the system may not want to be antiferromagnetic (but for instance it is ferrimag-
netic!).

runafm lapw saves you more than a factor of 2 in in computer time, since only spin-up is cal-
culated and in addition the scf-convergence may be MUCH faster. It works also with LDA+U
(case.dmatup/dn are also copied), but does NOT work with Hybrid-DFT nor spin-orbit cou-
pling, since this requires the presence of both vector files in the LAPWSO step.

4.5.6 Spin-orbit interaction

You can add spin-orbit interaction in LAPWSO (called directly after LAPW1) using a 2nd varia-
tional method with the scalar-relativistic orbitals (from LAPW1) as basis. The number of eigen-
values will double since SO couples spin-up and dn states, so they are no longer separable. In
addition, LOs with a “p1/2” radial basis can be added [Kuneš et al., 2001].

To assist with the generation of the necessary input files and possible changes in symmetry, a script
init so lapw exists. For non-spinpolarized cases nothing particular must be taken into account
and SO can be easily applied by running run lapw -so. It will automatically use the complex
version of LAPW2.

However, for spin-polarized cases, the SO interaction may change (lower) the symmetry depend-
ing on how you choose the direction of magnetization and care must be taken to get a proper setup.
init so lapw together with symmetso generates the proper symmetry.
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Just a few hints what can happen:

I Suppose you have a cubic system and put the magnetization along [001]. This will create
a tetragonal symmetry (and you can temporarily tell this to the initialization programs by
changing the respective lattice parameter c to a tetragonal system).

I If you put the magnetization along [111], this creates most likely a rhombohedral (or hexag-
onal) symmetry. (Try to visualize this for a fcc lattice, XCRYSDEN is very useful for this
purpose).

I Symmetry operations can be classified into operations which invert the magnetization,others
which leave it unchanged and some which do some arbitrary rotation. The program
symmetso (part of init so lapw) sorts these operations in the proper way.

I In a spin-polarized case without inversion symmetry in the original structure, you must not
“add inversion” in KGEN and should create the k-mesh using x kgen -so .

The recommended way to include SO in the calculations is to run a regular scf calculation first,
save the results, initialize SO and run another scf cycle including SO:

I run[sp] lapw
I save lapw case nrel
I init so lapw
I run[sp] lapw -so

For spin-polarized systems you may want to add the “-dm” switch to calculate also the orbital
magnetic moment.

4.5.7 Orbital potentials

In WIEN2kit is possible to go beyond standard LDA (GGA) and include orbital dependent po-
tentials in methods like LDA+U or the ”Orbital-Polarization”, which are very useful for strongly
correlated systems.

To use these features you need to create input-files for LAPWDM and ORB (case.indm,
case.inorb). You may copy a template from SRC templates, or more conveniently, use
init orb lapw -orb, but still you must modify the templates according to your needs. In partic-
ular you must select for which atoms and which orbitals (usually d-Orbitals of late transition metal
atoms or f-orbitals for 4f/5f atoms) you want to add such a potential and also choose the proper
U and J values for them. Once this is done, you can include this using the -orb switch. The den-
sity matrix (case.dmatup/dn) will be calculated in lapw2 (or in lapwdm when spin-orbit is also
used), it will be mixed in mixer (consistently with the “regular” charge density) and the orbital
dependent potentials will be calculated on orb (after lapw0). Note, you must run spin-polarized
in order to use orbital potentials.

I runsp lapw -orb [-so]

If you want to force a non-magnetic solution you can constrain the spin-polarization to zero using
runsp c lapw.

Without SO, case.vorbup/dn will be considered in LAPW1(c). With SO, it will be applied in
LAPWSO (and allows coupling of nondiagonal spin-terms).

It is also possible to combine an LDA+U potential with the effect of an external magnetic field. In
this case, you need two input files, case.inorb Bext and case.inorb U, which are identical to
the usual case.inorb for external fields and LDA+U, respectively (see section 7.5.3). You can run
this using:

I runsp lapw -orbext [-so]
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4.5.8 Onsite-exact-exchange and hybrid functionals for correlated electrons

In WIEN2k, it is also possible to go beyond standard LDA (GGA) and include onsite-exact-
exchange (i.e., Hartree-Fock), which is very useful for strongly correlated systems, since such
calculations are computationally nearly as cheap as standard DFT (or LDA+U). The onsite-exact-
exchange/hybrid methods apply HF only inside the atomic spheres and only to one particular
orbital. Thus you can use it only for localized electrons (see [Tran et al., 2006] for details). Onsite-
exact-exchange will NOT improve gaps in sp-semiconductors. For these systems you have to use
full hybrid-DFT (see Sec.4.5.9) or the mBJ potential (see Sec.4.5.11)

Onsite hybrid functionals for correlated electrons:

The one-parameter onsite hybrid functionals have the general following form:

Eonsite−hybrid
xc [ρ] = ESL

xc [ρ] + α
(
EHF
x [Ψcorr]− ESL

x [ρcorr]
)

where ESL
xc is the underlying semilocal (SL) functional. The following semilocal functionals can be

used in Eonsite−hybrid
xc :

I LDA: XC LDA in case.in0. mode=HYBR and fraction=α in case.ineece
I PBE: XC PBE in case.in0. mode=HYBR and fraction=α in case.ineece
I WC: XC WC in case.in0. mode=HYBR and fraction=α in case.ineece
I PBEsol: XC PBESOL in case.in0. mode=HYBR and fraction=α in case.ineece
I TPSS: XC TPSS in case.in0. mode=HYBR and fraction=α in case.ineece
I REVTPSS: XC REVTPSS in case.in0. mode=HYBR and fraction=α in case.ineece
I SCAN: XC SCAN in case.in0. mode=HYBR and fraction=α in case.ineece
I MBJ: XC MBJ in case.in0. mode=HYBR and fraction=α in case.ineece. Please note,

that the double counting correction will utilize LDA (instead of MBJ).

The three-parameter onsite hybrid functionals B3PW91 and B3LYP are also available. These two
functionals were proposed with the fraction of exact exchange α = 0.2, however other values for α
can be chosen as well.

I B3PW91: EX B3PW91 EC B3PW91 VX B3PW91 VC B3PW91 in case.in0. mode = HYBR
and fraction = 0.2 in case.ineece.

Eonsite−B3PW91
xc [ρ] = ELDA

xc [ρ] + 0.2
(
EHF
x [Ψcorr]− ELDA

x [ρcorr]
)

+0.72
(
EB88
x [ρ]− ELDA

x [ρ]
)

+0.81
(
EPW91
c [ρ]− ELDA

c [ρ]
)

where ELDA
c = EPW92

c .
I B3LYP: XC B3LYP in case.in0. mode = HYBR and fraction = 0.2 in case.ineece.

Eonsite−B3LYP
xc [ρ] = ELDA

xc [ρ] + 0.2
(
EHF
x [Ψcorr]− ELDA

x [ρcorr]
)

+0.72
(
EB88
x [ρ]− ELDA

x [ρ]
)

+0.81
(
ELYP
c [ρ]− ELDA

c [ρ]
)

where ELDA
c = EVWN5

c .

Onsite exact-exchange functionals for correlated electrons:

Onsite Hartree-Fock calculations, i.e.,

Eonsite−HF
xc [ρ] = ESL

xc [ρ] + EHF
x [Ψcorr]− ESL

xc [ρcorr]

are also possible with the following semilocal functionals.
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I LDA: XC LDA in case.in0. mode=EECE and fraction=1 in case.ineece
I PBE: XC PBE in case.in0. mode=EECE and fraction=1 in case.ineece
I WC: XC WC in case.in0. mode=EECE and fraction=1 in case.ineece
I PBEsol: XC PBESOL in case.in0. mode=EECE and fraction=1 in case.ineece
I TPSS: XC TPSS in case.in0. mode=EECE and fraction=1 in case.ineece
I REVTPSS: XC REVTPSS in case.in0. mode=EECE and fraction=1 in case.ineece
I MBJ: XC MBJ in case.in0. mode=EECE and fraction=α in case.ineece. Please note, that

the double counting correction will utilize LDA (instead of MBJ).

Input and execution:

In addition to the input files which are necessary for an usual LDA or GGA calculation, the
input file case.ineece is necessary to start a calculation. You may copy a template from
SRC templates or use init orb lapw -eece, but must modify it according to your needs.
In particular you must select for which atoms and which orbitals (usually d-Orbitals of late transi-
tion metal atoms or f-orbitals for 4f/5f atoms) you want to add such a potential and which type of
functional you want to use.

A sample input for calculations with exact exchange is given below.

------------------ top of file: case.ineece -----------
-9.0 2 emin, natorb
1 1 2 1st atom index, nlorb, lorb
2 1 2 2nd atom index, nlorb, lorb
HYBR HYBR / EECE mode
0.25 fraction of exact exchange
------------------ bottom of file ---------------------

Interpretive comments on this file are as follows:

line 1: free format
emin, natom

emin lower energy cutoff, select it so that the energy of correlated states is
larger than emin

natorb number of atoms for which the exact exchange is calculated

line 2: free format
iatom(i), nlorb(i), (lorb(li,i), li=1,nlorb(i))

iatom index of atom in struct file
nlorb number of orbital moments for which exact exchange shall be calcu-

lated
lorb orbital numbers (repeated nlorb-times)

2nd line repeated natorb-times
line 3: free format
mode

HYBR means that LDA/GGA exchange will be replaced by exact exchange
EECE means that LDA/GGA exchange-correlation will be replaced by exact

exchange

line 4: free format

alpha This is the fraction of Hartree-Fock exchange (between 0 and 1)
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The electron density of the correlated electrons (4f or 3d) could have a very sharp angular nodal
structure and common GGAs behave very badly for such densities (check :FIT in case.scf or
look up Vxc(Rmt) in case.output0. It is therefore often recommended to use LDA instead of a
GGA for the double counting correction of the exchange term for the correlated electrons. This is
possible by copying case.in0 to case.in0eece lda and specify VX LDA (see 7.1 in the first
line. Please note, for MBJ this will be done automatically and a warning will be issued.

I runsp lapw -eece [-so] (or runsp c lapw -eece)

As with LDA+U , hybrid functionals can be used only for spin-polarized calculations and
the switch -eece) activates it. runsp lapw will internally call runeece lapw, which will
create all necessary additional input files (it requires a case.in0 file including the op-
tional IFFT line as generated by init lapw): case.indm (case.indmc), case.inorb,
case.in0eece, case.in2eece (case.in2ceece) and once this is done, calculates in a se-
ries of lapw2/lapwdm/lapw0/orb calculations the corresponding orbital dependent potentials.

It is also possible to combine orbital potentials with the effect of an external magnetic field. In
this case, you need an additional input file, case.inorb Bext, which is identical to the usual
case.inorb for external fields (see section 7.5.3). You can run this using:

I runsp lapw -eeceext [-so]

4.5.9 Unscreened and screened hybrid functionals (“hf”-module)

The onsite exact-exchange/hybrid functionals from 4.5.8 can be applied only to localized electrons
(typically 3d or 4f ), but lead to cheap calculations. In WIEN2k, it is also possible to apply hybrid
(and Hartree-Fock) functionals to all electrons, however this leads to calculations which are one
or two orders of magnitude more expensive. Hybrid functionals are usually more accurate than
the semilocal functionals for the electronic properties of semiconductors and insulators. They also
give accurate results for strongly correlated systems like NiO. In hybrid functionals a fraction α of
semilocal (SL) exchange is replaced by Hartree-Fock (HF) exchange:

Ehybrid
xc = ESL

xc + α
(
EHF
x − ESL

x

)
Hybrid functionals can also be constructed by considering only the short-range part of EHF

x

and ESL
x , which leads to the so-called ”screened” hybrid functionals. In WIEN2k, the un-

screened and screened hybrid functionals are implemented using the 2nd variational procedure
[Tran and Blaha, 2011]. A few important points should be noted:

I Both the k-point and MPI parallelizations can be used (simultaneously or only one of them).
As usual, the k-point parallelization is over the k-points in the irreducible Brillouin zone and
is managed by c-shell scripts. There are two modes of MPI parallelization that can be used.
In the first one (-mode1), which is the default, these are the loops over the occupied bands
in the main subroutine that are parallelized, and this should be the most efficient mode in
terms of speed. However, if your system is too large in terms of memory requirement for
your nodes, then you can try the second mode (-mode2), which is much more efficient in
terms of memory, but may lead to slower calculations. With -mode2, the first part of the
main subroutine is parallelized over the matrix elements of the 2nd variational Hamiltonian
(roughly nband*nband/2 where nband is specified in case.inhf, see 7.7.1), while in the
second part this is done for the loops over the occupied bands.

I Due to the orbital-dependency of the HF potential, the files case.vectorhf,
case.energyhf and case.weighthf are also saved when save lapw is executed. If you
restart a calculation without case.vectorhf, then, for the first iteration, it will be gener-
ated from the semilocal potential (lapw1), and therefore the number of scf iterations to reach
convergence will be larger.
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The available functionals

Among the semilocal functionals ESL
xc available in WIEN2k, only a few of them can be used

in Ehybrid
xc (both in unscreened and screened modes). The functionals are the following

(case.in0 grr is for the exchange part ESL
x ):

I LDA: XC LDA in case.in0 and EX SLDA VX SLDA in case.in0 grr
I PBE: XC PBE in case.in0 and EX SPBE VX SPBE in case.in0 grr. The functionals PBE0

and YS-PBE0 (similar to HSE06 [Heyd et al., 2003, Krukau et al., 2006]) correspond to α =
0.25 in case.inhf (see 7.7).

I WC: XC WC in case.in0 and EX SWC VX SWC in case.in0 grr
I PBEsol: XC PBESOL in case.in0 and EX SPBESOL VX SPBESOL in case.in0 grr
I BPW91 (this is not B3PW91): EX B88 VX B88 EC PW91 VC PW91 in case.in0 and EX SB88

VX SB88 in case.in0 grr.
I BLYP (this is not B3LYP): EX B88 VX B88 EC LYP VC LYP in case.in0 and EX SB88

VX SB88 in case.in0 grr.

For the screened hybrid functionals using PBE, PBEsol or B88 for exchange, an alterna-
tive for the screened exchange specified in case.in0 grr is to use the one proposed in
[Henderson et al., 2008, Weintraub et al., 2009], HJS, which is based on the error function (instead
of the Yukawa function) for the screening:

I EX SHJSPBE VX SHJSPBE
I EX SHJSPBESOL VX SHJSPBESOL
I EX SHJSB88 VX SHJSB88

Note that the screening parameter ω in HJS is set to (2/3)λ of the value specified in case.inhf
(see [Tran and Blaha, 2011]). Note also that the screening in the HF exchange is still done with the
Yuakawa function (with λ for the screening) since the error-function-based screening in HF is not
implemented.

In addition, calculations with the well-known B3PW91 and B3LYP (with VWN5) unscreened hy-
brid functionals (see 4.5.8 for the functionals form) can also be done:

I B3PW91: XC B3PW91 in case.in0, EX SLDA VX SLDA in case.in0 grr, and select no
screening and α = 0.2 in case.inhf

I B3LYP: XC B3LYP in case.in0, EX SLDA VX SLDA in case.in0 grr, and select no
screening and α = 0.2 in case.inhf

Hartree-Fock calculations (without correlation) are also possible:

I HF: EX LDA VX LDA in case.in0, EX SLDA VX SLDA in case.in0 grr, and select no
screening and α = 1 in case.inhf

Flow in run lapw -hf

The flow of programs during a scf iteration when executing run lapw -hf is the following (non-
spin-polarized):

I x lapw0 -grr (semilocal exchange)
I x lapw0 (semilocal exchange-correlation)
I x lapw1 (semilocal orbitals)
I x lapw2 (semilocal bands)
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I mv case.vectorhf case.vectorhf old
I x hf (-so) (hybrid orbitals)
I (x lapwso (hybrid-SO orbitals))
I x lapw2 -hf (-so) (hybrid electron density and bands)
I x lcore
I x mixer

Self-consistent calculation

The steps to perform a calculation with hybrid functionals are the following:

I Do a calculation with the underlying semilocal functional ESL
xc (recommended but not

mandatory).
I ”save” the semilocal calculation.

The next steps can be done conveniently using init hf lapw [-up]:

I create case.inhf (cp $WIENROOT/SRC templates/template.inhf case.inhf).

– Concerning nband:
While the default values for most parameters are more or less reasonable, you must set
nband manually. It determines the size of the 2nd variational Hamiltonian, therefore
technically it needs to be set to at least the number of occupied bands plus one in order
to have the calculation running. The convergence of the results with nband should be
checked, but be aware that computing time scales as nband2. The value of nband that
leads to a reasonably converged result will strongly depend on the studied system and
property. For the geometry, a minimal value (number of occupied bands plus one) may
already be enough. For the electronic structure (e.g., band gap), at least a few bands
per atom should be added. For properties directly related to the electron density (e.g.,
electric field gradient or X-ray structure factors), much higher values of nband (up to
2-3 times the number of occupied bands) should be used and carefully tested. Note that
while EMAX in case.in1 determines the size of the 2nd variational Hamiltonian in
lapwso (for calculations with SO), it is not the case here for hybrid (EMAX just needs
to be set to a value that is large enough to provide enough orbitals to the hf-module).

I create case.in0 grr (cp case.in0 case.in0 grr), this file contains:

– a screened exchange functional (e.g., EX SPBE VX SPBE) for the exchange functional
(see above)

– ”R2V” option (instead of ”NR2V”) such that the exchange potential is written to
case.r2v grr

– ”KXC” (instead of ”TOT”) such that αESL
x is printed in case.scf0 grr (and

case.scf) under the label :AEXSL

I In case.inc the print switch has to be ”1” for all atoms such that the core orbitals are printed
in case.corewf (you don’t have to set this manually, the script run lapw will do it auto-
matically when -hf is specified).

I if nband is large, you may have to edit case.in1 and set EMAX to a higher value, e.g., 5 Ry
(or nband when using ELPA in MPI-parallel calculations).

I Execute run kgenhf lapw. This generates case.klist fbz, case.klist ibz,
case.kgen ibz and case.outputkgenhf. One must use identical k-meshes and shifts
for IBZ and FBZ. Note that the k-parallelization is done over the k-points specified in
case.klist ibz (irreducible Brillouin zone).

All these steps above can be conveniently performed using the script init hf lapw.

Once the initializations has been done, execute run lapw (or runsp lapw) with the switch -hf:
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run(sp) lapw -hf ...

Spin-orbit coupling

It is possible to include spin-orbit (SO) coupling in a calculation with hybrid functionals. The
orbitals generated by the hf-module will be used as basis functions in the so-module. Therefore,
such a calculation consists of two successive 2nd variational procedures (lapw1→hf→lapwso).
As for semilocal functionals, the script init so lapw (see section 5.2.18) has to be executed in
order to initialize the SO calculation. Then, start the calculation with the options -hf and -so:

run(sp) lapw -hf -so ...

A few important points should be noted:

I The size of the Hamiltonian in the so-module is determined by the the number of bands
nband specified in case.inhf (see 7.7.2), while it was EMAX in case.in1 for semilocal
calculations.

I For a spin-polarized calculation, it is necessary to regenerate the k-mesh with
”run kgenhf lapw -so”.

I The relativistic local orbitals p1/2 (specified in case.inso) can not be used.
I It does not matter in which order the scripts init hf lapw and init so lapw are executed.
I The option -so can be used simultaneously with the option -diaghf, -redklist,

-nonself or -newklist.

Neglect of the nondiagonal terms

If only the eigenvalues are wanted, you may use the switch -diaghf. By using this switch, only
the diagonal elements of the 2nd variational Hamiltonian matrix are calculated (the non-diagonal
elements are set to zero). This leads to a much faster calculation of the eigenvalues, while keeping
a very good accuracy [Tran, 2012]. However, the orbitals will not be modified, therefore running
the calculation for more than one iteration is useless (the result will not change except for metallic
systems). This option is not recommended for systems which are described as metallic with the
semilocal functional or for difficult systems (e.g., NiO, see [Tran, 2012]). It is important to be aware
that with this option, the total energy (:ENE in case.scf) is wrong unless the option -nonself
(see below) is also used. After having done and saved a well converged calculation with the semilo-
cal functional, the setting up of such a calculation is the same as for a self-consistent calculation (see
above), but then run(sp) lapw is executed with -diaghf (-hf and -i 1 will be set automati-
cally):

run(sp) lapw -diaghf ...

The option -diaghf can be used simultaneously with the option -so, -nonself or -redklist.

Reduced k-mesh for the HF potential

In order to reduce the computational time for the calculation of the HF potential, the internal loop
over the k-points can be reduced to a subset of k-points. For instance, for a calculation with a
12×12×12 k-mesh, the reduced k-mesh for the HF potential can be one of the following: 6×6×6,
4 × 4 × 4, 3 × 3 × 3, 2 × 2 × 2 or 1 × 1 × 1. This option, which should be used only in the case of
screened exchange (see [Paier et al., 2006]), is particularly interesting for total energy calculations.
Obviously, choosing such a reduced k-mesh is an approximation which needs to be tested. The
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setting up of such a calculation is the same as for a self-consistent calculation (see above), but with
the switch -redklist when executing run kgenhf lapw (to create also case.klist rfbz,
case.klist ribz and case.kgen ribz):

run kgenhf lapw -redklist

and run(sp) lapw:

run(sp) lapw -hf -redklist ...

The option -redklist can be used simultaneously with the options -so, -nonself or -diaghf.

Non-self-consistent calculation of the total energy for hybrid functionals

It is possible to calculate the total energy non-self-consistently, i.e., by plugging the orbitals ob-
tained from a calculation with the underlying semilocal functional ESL

xc into the total-energy hy-
brid functional. By doing so, the 2nd variational Hamiltonian is not calculated and therefore the
computational time will be reduced significantly. After having done and saved a well converged
calculation with the semilocal functional, the setting up of a non-self-consistent calculation is the
same as for a self-consistent calculation (see above), but with the additional switch -nonself (-hf
and -i 1 will be set automatically) that has to be used in run(sp) lapw :

run(sp) lapw -nonself ...

This option can be particularly interesting for the calculation of the lattice constant, which depends
mainly on the functional, but very little on the orbitals plugged into the functional. It can be used
simultaneously with the option -so, -diaghf or -redklist.

Starting a calculation from another k-mesh

Due to the orbital-dependence of the HF potential, it is not straightforward to start directly a calcu-
lation with a potential generated from a previous calculation with another k-mesh. However, due
to the high cost of a hybrid calculation, it is desirable to have this possibility in order to reduce the
number of iterations during the scf procedure.

This option is also useful if a vector file on a very dense k-mesh is needed, e.g. for optics or
transport properties (BoltzTraP), while using such a k-mesh for a full self-consistent calculation
would not be necessary (and would be too expensive). In this case you want to do only one iteration
(-i 1).

The procedure is the following:

I Do the calculation with the first k-mesh and ”save” it when it is finished (do not execute
clean lapw since case.vectorhf should be present).

I Execute run kgenhf lapwwith the -newklist switch to move previous *klist* files to * old
and create files for the new k-mesh.

run kgenhf lapw -newklist [-redklist ...]
I Run the HF calculation with -newklist:

run(sp) lapw -hf -newklist (-i 1) ...
Note that starting from the 2nd iteration -newklist is automatically switched off.

I If subsequently other calculations are done with the new k-mesh, then -newklist must not
be used, since case.vectorhf should now correspond to the new k-mesh.

This option can be used simultaneously with -so or -redklist, but not with -diaghf and
-nonself. Note that when -newklist is used, the total energy (:ENE in case.scf) at the 1st
iteration is wrong.
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Band structure plotting

In order to make a plot of the band structure with hybrid functionals, it is more convenient to use
the program run bandplothf lapw. After the self-consistent calculation is finished and saved
(do not execute clean lapw since case.vectorhf must be present), do the following steps:

I Create case.klist band.
I Execute run bandplothf lapw with one or several of the following flags that were

also used during the self-consistent calculation: -so, -up/dn, -diaghf, -redklist,
-mode1/mode2, -in1orig. Note that a parallel calculation of the band structure (with -p)
can be done even if the scf calculation was not done in parallel (but you still need a file
.machines) and vice-versa. You can also use -qtl to calculate the partial charges for band
character plotting.

I Create case.insp.
I Execute x spaghetti with the switch -hf (-so -up/dn).

First, run bandplothf lapw calculates the semilocal orbitals (x lapw1 -band) for the k-points
in case.klist band. Then, the hybrid eigenvalues at these k-points are calculated (x hf
-band). If -qtl is used, then the partial charges will be calculated (x lapw2 -band -qtl).

Density of states

The calculation of the DOS is the same as for the semilocal functionals, but using the additional
flag -hf when executing lapw2 for the partial charges (x lapw2 -qtl -hf (-up/dn) (-so))
and tetra for the DOS (x tetra -hf (-up/dn) (-so)).

4.5.10 Slater, SmBJ and KLI potentials (“hf”-module)

The hf-module can also calculate the Slater [Slater, 1951], SmBJ [Becke and Johnson, 2006,
Tran and Blaha, 2009] and KLI [Krieger et al., 1990] exchange potentials (see [Tran et al., 2015b,
Tran et al., 2016] for reports of the implementations). The Slater potential (not to be confused
with the LDA exchange potential of the homogeneous electron gas) is an average of the non-
multiplicative HF potential. SmBJ is the mBJ potential (see Sec. 4.5.11) but using the Slater poten-
tial instead of the MGGA Becke-Roussel potential. The KLI potential consists of the Slater potential
plus an additional term. These potentials are multiplicative, but nonlocal in the sense that they de-
pend on the orbitals and require an integration at each point of space, therefore their calculations
is rather expensive (same order of magnitude as for an HF calculation).

The steps to do a calculation with the Slater/SmBJ/KLI potential are the following:

I As for a standard LDA/GGA calculation, execute init lapw to prepare the input files.
I Execute init hf lapw in order to prepare the input files for the hf-module.
I In case.in0, choose either the Slater (VX SLATER), SmBJ (VX SMBJ) or KLI (VX KLI) ex-

change potential. If you do not want to add a correlation potential to the exchange one, then
choose VC NONE (this is mandatory with KLI). Since lapw0 -grr is not required you can
delete case.in0 grr.

I If you have chosen Slater or KLI, then choose option ”R2V” (instead of ”NR2V”) in
case.in0. For SmBJ you need to follow the procedure explained in Sec. 4.5.11 to create
the starting case.r2v and case.tau files.

I In case.inhf, choose α = 1 and do not use screening (replace T by F and remove the next
line where λ is specified).

I To start the calculation, do not execute run(sp) lapw, but the script run vnonloc lapw
(see explanations below and Sec. 5.1.6) instead:
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run vnonloc lapw (-sp) ...

About the input file case.inhf (see 7.7.2) for the Slater/SmBJ/KLI potentials:

I The Slater/SmBJ/KLI potential is multiplied by the parameter α, whose default value is 0.25
(appropriate for hybrid functionals). Therefore, α should be set to 1 in order to have the full
Slater/SmBJ/KLI potential.

I The value of nband is not used for the Slater/SmBJ/KLI potential. However, it is still neces-
sary to replace ”xx” by some integer.

I The meaning of gmax, lmaxe and lmaxv is the same as for hybrid functionals
I The tolerance tolu is not used for the Slater/SmBJ/KLI potential.

A few important points:

I The hf-module generates the file case.r2v nonloc which contains the Slater/SmBJ/KLI
potential multiplied by the electron density. This file is read by lapw0 in order to include the
Slater/SmBJ/KLI potential into the total potential. If case.r2v nonloc is not present for
lapw0 (if this happen this should be only at the first iteration), then lapw0 will use the LDA
exchange potential instead.

I The calculation of the Slater/SmBJ/KLI potential by the hf-module can be done in parallel.
Both the k-point and MPI parallelizations can be used (simultaneously or only one of them).
As usual, the k-point parallelization is over the k-points in the irreducible Brillouin zone. The
MPI parallelization is implemented in the main subroutines for one of the loop of the double
loops which run over the occupied bands. This means that the largest number of cores which
makes sense to use is the number of k-points in the IBZ times the number of occupied bands.

I The scf convergence with the Slater/SmBJ/KLI potential can be extremely difficult to achieve.
Therefore, it is more or less necessary to use the script run vnonloc lapw (instead of
run(sp) lapw) to run the calculation. The script run vnonloc lapw runs the calculation
with an inner/outer loops procedure similar to the one described in [Betzinger et al., 2010]
for the HF method. Within an inner scf loop, the Slater/SmBJ/KLI potential is kept fixed
(frozen), which leads to rather fast convergence (the files are saved under a name which
contains ”fixed”). The outer loop consists of updating the Slater/SmBJ/KLI potential (the
saved files are named with ”updated”) right after an inner scf loop. Note that with KLI, the
number of iterations for the outer loop can be huge (e.g., 100). For spin-polarized calcula-
tions, the flag ”-sp” has to be used. See Sec. 5.1.6 for the available options and flages with
run vnonloc lapw.

4.5.11 Modified Becke-Johnson potential (mBJ) for band gaps

The modified Becke-Johnson exchange potential + LDA-correlation [Tran and Blaha, 2009] allows
the calculation of band gaps with an accuracy similar to very expensive GW calculations. It is
a semilocal approximation to an atomic “exact-exchange” potential and a screening term. This is
only a XC-potential, not a XC-energy functional, thusExc is taken from LSDA and the forces cannot
be used with this option.

We recommend the following steps to perform a mBJ calculation (the purpose of the first five steps
is just only to create the starting case.r2v and case.tausum files):

I Run a regular initialization and SCF calculation using LDA or PBE (it does not matter at all
which functional you choose).

I init mbj lapw. This performs automatically the following steps:

– Create case.inm tau (cp $WIENROOT/SRC templates/template.inm tau
case.inm tau.
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– Edit case.in0 and set ”R2V” option (instead of ”NR2V”) such that the XC potential is
written in case.r2v.

I Run one more iteration (use run lapw -NI -i 1) to generate the required case.r2v and
case.tausum files.

I “save” the LDA (or PBE) calculation.
I Run init mbj lapw again and choose mBJ (option 1). The second call (once case.inm tau

is present) will do the following steps:

– Edit case.in0 and change the functional to option XC MBJ (this is mBJ).
– cp case.in0 case.in0 grr and choose EX GRR VX GRR in case.in0 grr. This

option will calculate the average of ∇ρ/ρ over the unit cell. (The presence of
case.in0 grr will be detected during the SCF procedure and lapw0 will be called
twice, first with the input file case.in0 grr, then with case.in0.)

– Select a specific mBJ parametrization (see below) and creates the corresponding file
case.in0abp.

I Optionally, edit case.inm and choose the PRATT mixing scheme, although with recent
mixer versions this should be hardly necessary.

I Run the mBJ SCF calculation.

In rare cases it could be that the default mixing scheme leads to convergence problems. The reason
is that the mBJ potential also depends on the kinetic energy density which is not mixed in mixer.
If such a convergence problem appears, you may have to restart the MSR1 mixing by removing the
broyden files (rm *.broy* or even use the PRATT mixing. The PRATT mixing with the required
small mixing parameter will be very slow, (otherwise leading to oscillations or even divergence)
and thus later switch back to MSR1 after some initial (typical 5-20) scf-cycles.

The mBJ potential uses the average of ∇ρ/ρ over the unit cell. Such average does not make sense
for interfaces and systems with vacuum like surfaces or molecules. For a system with vacuum,
a physically meaningful way to avoid this problem is first to run a calculation for a similar bulk
structure (e.g., bulk graphite for graphene monolayer), then cp case bulk.grr to case.grr and
remove case.in0 grr (to avoid that case.grr is updated). This runs mBJ with a fixed value
of ∇ρ/ρ (and therefore c). Similarly, for interfaces run the calculations for the two bulk structures
constituting the interface, and then calculate the average of the two values in case bulk.grr
that you write in case.grr for the calculation on the interface (with case.in0 grr removed to
avoid that case.grr is updated). However, a better alternative is to use the local mBJ potential
[Rauch et al., 2020], see Sec. 4.5.12.

If you want to use other mBJ parameters than those defined in [Tran and Blaha, 2009], eg. the
optimized values of ([Koller et al., 2012]) you can define them during init mbj lapw or directly
in case.in0abp. Put 3 values A, B, e (default=-0.012, 1.023, 0.5), which determines the parameter
c in mBJ according to eq. 7 or Table II. in [Koller et al., 2012].

4.5.12 Local modified Becke-Johnson potential (lmBJ) for interfaces and sys-
tems with vacuum

As mentioned in Sec. 4.5.11, the mBJ potential can not be applied to interfaces and systems with
vacuum without fixing ∇ρ/ρ to the value obtained from bulk calculations. A better alternative is
to use the local mBJ potential (lmBJ) [Rauch et al., 2020], where the average of ∇ρ/ρ is calculated
locally instead of in the whole unit cell. This results in a position-dependent average of ∇ρ/ρ, and
therefore also a position-dependent c(r).

The steps to perform a lmBJ calculation are basically the same as for a mBJ calculation, but with
the following differences:
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I Choose lmBJ (option 2) instead of mBJ when init mbj lapw is executed for the second time.
This will automatically

– Select XC LMBJ in case.in0.
– Select VX LGRR VC NONE in case.in0 grr.
– Add the value of the threshold Wigner-Seitz radius rths (the default value is 5 bohr) at

the 5th line in case.in0abp.
– Create the file case.innlvdw, whose 7th line contains the smearing parameter σ (the

default value is 3.78 bohr) which determines the degree of localization for the average
of ∇ρ/ρ.

NOTE that Rauch et al. [Rauch et al., 2020] used rths = 7 bohr and A,B parameters of choice ”1” in
init mbj lapw.

I Run the lmBJ calculation with -lmbj:
run(sp) lapw -lmbj ...

such that the nlvdw module is executed in order to calculate the position-dependent average
∇ρ/ρ, that is stored in case.r2v nonloc.

Correlation estimator for DFT+U

The local mBJ mothod can also be used to calculate a “correlation estimator” as defined by Kalan-
tari et al. [Kalantari et al., 2021] for a transition metal (TM) atom. This helps to decide whether
DFT+U should be used for a particular atom in more complicated structures like surfaces or in-
terfaces with itinerant and correlated TM atoms. For this you would run a lmBJ initialization as
described above, but then edit case.innlvdw and put a smaller smearing parameter (eg. 1.78,
see [Kalantari et al., 2021]) in the last line of this file. Then run

I x lapw0 -grr (creates case.r2v grr)
I x nlvdw -lmbj (creates case.r2v nonloc)
I cp case.r2v nonloc case.r2v
I x lapw5 -exchange (creates case.in5, unless already present)
I edit case.in5 and change the path of the plot:

– put the coordinates of the position of your TM atom in the first line
– change the number of points for plotting to “2 1 ”
– change ”ADD” to ”NONE”

I x lapw5 -exchange -up (creates case.rho onedim)

The first number (at distance 0.0) should be the desired∇ρ/ρ value on the chosen atom.

4.5.13 GLLB-SC method

For many types of solids, the GLLB-SC method [Gritsenko et al., 1995, Kuisma et al., 2010] pro-
vides band gaps that are of similar accuracy as with hybrid functionals and GW , but at a cost
similar to semilocal methods (see, e.g., [Tran et al., 2018] for a compilation of results). With GLLB-
SC, the band gap is calculated by adding an exchange discontinuity ∆x to the Kohn-Sham band
gap (i.e., the conduction band minimum minus the valence band maximum).

The way to use the GLLB-SC method is the following:

I In case.in0, specify the keywords VX GLLBSC and VC PBESOL for the exchange and cor-
relation potentials, respectively (any another choice for the correlation potential is also possi-
ble). Since GLLB-SC is a potential which has no associated expression for the energy, choose
whatever you want for EX SWITCH and EC SWITCH.
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I Create case.inm vresp (cp $WIENROOT/SRC templates/template.inm vresp
case.inm vresp.

I Run the calculation with -gllb:
run(sp) lapw -gllb ...

I Save the calculation with save lapw.
I In order to calculate ∆x, execute the following script:

run deltagllb lapw (-sp) ...
This script will run one iteration and then x lapw2 -all X Y (to calculate the density of
the lowest occupied orbital) and x lapw0. More details about run deltagllb lapw can
be found in Sec. 5.1.7).

I Extract the value of ∆x in case.scf0 (search for the keyword :DELTAXC) and add it to
:GAP from the previously saved calculation.

4.5.14 DFT–1/2 method

The DFT–1/2 method [Ferreira et al., 2008] is a fast method for band gap calculations. A standard
(semi)local calculation is done with an additional correction potential vS added to the exchange-
correlation potential vxc. The correction potential is the difference of the KS potential of the free
atom and the half–ionized atom, multiplied by a radial atom-centered step function, and summed
over all (corrected) atoms:

vS =
∑atoms
α Θ (rαc )A ∗ (vαKS (fα = 0)− C ∗ vαKS (fα = −1/2)) .

Here, fα is the occupation number of the ionized atomic orbital with respect to the neutral atom;
normally this is the orbital which contributes the most to the valence-band maximum. The cutoff
radii rc must be variationally determined by maximizing the band gap. A and C are the ‘amplifica-
tion factor’ and the ‘correction factor’ respectively. These are 1.0 in most DFT–1/2 calculations but
can be used to tune the correction. Despite the name of the correction, in some materials removing
1/4 electron is more suitable. See references [Xue et al., 2018, Doumont et al., 2019] for details.

In general, DFT–1/2 should only be used for band gap calculations. It is also not suitable for all
classes of materials, see [Doumont et al., 2019].

In practice, a DFT–1/2 calculation in WIEN2k consists of the following steps:

I Run x lstart to generate the KS potential for the neutral atoms (case.potup/dn).
I Produce case.inst half (copy case.inst and edit by removing 0.5 electrons from the

orbitals and atoms to be corrected). Note that the latter correction is spin-dependent, so take
care of the magnetic order of your system!

I Run x lstart -half to generate the KS potential for the 1/2-ionized atoms
(case.potup/dn half).

I Produce case.inpd. This file defines the cutoff function and its parameters, the atomic
cutoff radii rαc , and the ‘amplification factor’ A and ‘correction factor’ C respectively.
An example is given below.

I Run x dstart -half [-up/dn] ... to generate the correction potential vS
(case.r2v half/dn)

I Run the SCF calculation: run(sp) lapw -half ...

Since for DFT–1/2 one should optimize the atomic cutoff radii rαc , the workflow given above needs
to be repeated several times as the band gap should be maximized with respect to rαc . A csh-
script in $WIENROOT/SRC templates/iterate cutoff.job can be used as template and after
adaptation to your specific case simplifies the finding of the optimal rαc for maximizing the band
gap.

The necessary input file case.inpd looks like:
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------------------ top of file: case.inpd -------------------
poly_out 8 # cutoff-function [parameters]
0.00 0.00 # CUTOFF RADII [AT_1_in..AT_N_in AT_1_out..AT_N_out ]
1.00 1.00 # amplification factor, correction factor
------------------- bottom of file ---------------------------

Interpretive comments follow:

line 1: free format
cutoff function [parameters]: three variants are possible

1. poly out p from [Ferreira et al., 2008]

Θp (r, rout) =

{ (
1−

(
r
rout

)p)3
r ≤ rout

0 r > rout
default: p = 8

2. poly in poly out p from [Xue et al., 2018]

Θp (r, rin, rout) =

{ (
1−

[
2(r−rin)
rout−rin − 1

]p)3
rin < r < rout

0 else
default: p = 20

line 2: free format

cutoff-
radii

Cutoff radii for all atoms (also non-corrected ones)

inner radii first for shell–like cutoff functions
Θ (r, rout) r1out...r

N
out

Θ (r, rin, rout) r1in...r
N
inr

1
out...r

N
out

line 3: free format

amplification
factor

Multiplies the total correction potential by real number (as defined
above)

correction
factor

Multiplies 1/2–ionized part of potential by real number (as defined
above)

4.5.15 DFT-D3 and DFT-D4 for dispersion energy

dftd3 and dftd4 calculate the dispersion energy and forces using the atom pairwise meth-
ods DFT-D3 [Grimme et al., 2010, Grimme et al., 2011] and DFT-D4 [Caldeweyher et al., 2017,
Caldeweyher et al., 2019, Caldeweyher et al., 2020], respectively. Since these methods depend only
on the positions of atoms (no dependence on the electron density) they are very fast and add very
little computer time. The dftd3 and dftd4 packages are not included by default in WIEN2k,
but can be downloaded from the website of the group of S. Grimme (https://www.chemiebn.
uni-bonn.de/pctc/mulliken-center/software). When compilation is done, the executa-
bles dftd3 and dftd4 have to be copied in the $WIENROOT directory.

run(sp) lapw has to be executed with the switch -dftd3 or -dftd4:

I run(sp) lapw -dftd3/dftd4 ...

The user can either create the input file case.indftd3/case.indftd4 (described in
Secs. 7.2.2 and 7.3.2) by hand or let run(sp) lapw copy the default one from
$WIENROOT/SRC templates/.

https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software
https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software
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The dftd3 and dftd4 packages require the file case.poscar (or case.xyz if periodic boundary
conditions are switched off) created by the utility program struct2poscar, which is executed
automatically by run(sp) lapw.

The DFT-D3 and DFT-D4 methods contain parameters which are specific to the exchange-
correlation functional to which the dispersion energy is added.

More detailed information on DFT-D3 and DFT-D4 and on the available options are given in Secs.
7.2 and 7.3 and in the manuals of dftd3 and dftd4.

4.5.16 Nonlocal van der Waals functionals

The nlvdw module calculates the dispersion energy and potential with nonlocal van der Waals
(NL-vdW) functionals [Dion et al., 2004] using the FFT-based method of Román-Pérez and Soler
[Román-Pérez and Soler, 2009]. Details specific to WIEN2k can be found in [Tran et al., 2017].

The user has to copy the template input file case.innlvdw (described in Sec. 7.4.2) from
$WIENROOT/SRC templates/ and modify it if necessary.

run(sp) lapw has to be executed with the -nlvdw switch:

I run(sp) lapw -nlvdw ...

A few important points:

I The default values in case.innlvdw for the plane-wave expansion cutoff Gmax (25 bohr−1)
and density cutoff ρc (0.3 bohr−3) should be rather well converged in most cases. How-
ever, for very weakly bound van der Waals systems, it may be safer to check the conver-
gence by repeating the calculation with a larger ρc (e.g., 0.6 bohr−3). Be aware that with
such a larger value for ρc it may be necessary to increase Gmax to a larger value (e.g., 40
bohr−1). More details concerning the convergence with respect to ρc and Gmax can be found
in [Tran et al., 2017].

I Since the total energy changes for vdW-systems are very small, extremely high precision is
necessary. Most likely, one has to increase RKmax and GMAX (case.in2, as well as the
precision in lapw0 (case.in0: IFFT-parameters to -1 -1 -1 and IFFTfactor to 4 (or even 6)).

I If the calculation of forces is not required (i.e., no optimization of atomic positions), then it
is recommended to switch off the calculation of the NL-vdW potential in case.innlvdw in
order to speed up the calculation. The NL-vdW potential affects only very little the density
and electronic structure and is therefore essential only for the forces.

I nlvdw is parallelized with MPI and/or OpenMP, which consists mainly of MPI/OMP FFTW
(define the keyword NLVDW: in .machines, see Sec. 5.5).

I The script run(sp) lapw executes the module lapw0 with the switch -nlvdw (x lapw0
-nlvdw) such that the NL-vdW potential (if required in case.innlvdw) is read from
case.r2v nlvdw and added to the semilocal potential.

I The NL-vdW energy is written in case.scf next to the label :ENLVDW and is added to the
total energy by mixer.

About the kernel tables:

I The path of the kernel tables (specified in x lapw) that are used for the calculations are
$WIENROOT/SRC nlvdw/vdW kernel table (for kernel type 1, generated with
Nr points=2000, Nqs=30 and q cut=10, which is more or less similar as in [Klimeš et al., 2011]
and [Tran et al., 2017])
$WIENROOT/SRC nlvdw/rVV10 kernel table (for kernel types 2 and 3, generated with
Nr points=1024, Nqs=20 and q cut=0.5, which is the default in other codes).
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I The kernel table of type 1 which is the default in most other codes is
$WIENROOT/SRC nlvdw/vdW kernel table Nr points1024 Nqs20 q cut5 (gener-
ated with Nr points=1024, Nqs=20 and q cut=5). If the user wants to use this kernel, then it
has to be copied as follows:

– cd $WIENROOT/SRC nlvdw/
– cp vdW kernel table Nr points1024 Nqs20 q cut5 vdW kernel table

I Kernel tables with other parameters can be generated by using the stand-alone pro-
grams generate vdW kernel table.f and generate rVV10 kernel table.f that are
in $WIENROOT/SRC nlvdw/. First, compile with
ifort -FR generate vdW kernel table.f
or
gfortran -ffree-form generate vdW kernel table.f
and then run the executable a.out.

The functionals:

The type of NL-vdW kernel and its parameter(s) are chosen in case.innlvdw (Sec. 7.4.2), how-
ever, as usual the semilocal part of the exchange-correlation functional has to be specified in
case.in0. There is no restriction on the combination semilocal/NL-vdW. For well-known NL-vdW
functionals, the keywords are shown below:

I vdW-DF [Dion et al., 2004]:

– case.in0 : EX REVPBE EC LDA VX REVPBE VC LDA
– case.innlvdw : kernel type 1 and Zab = −0.8491

I vdW-DF2 [Lee et al., 2010]:

– case.in0 : XC GGA X RPW86 EC LDA VC LDA
– case.innlvdw : kernel type 1 with Zab = −1.887

I C09-vdW [Cooper, 2010]:

– case.in0 : XC GGA X C09X EC LDA VC LDA
– case.innlvdw : kernel type 1 with Zab = −0.8491

I optB88-vdW [Klimeš et al., 2010]:

– case.in0 : EX OPTB88 EC LDA VX OPTB88 VC LDA
– case.innlvdw : kernel type 1 with Zab = −0.8491

I optPBE-vdW [Klimeš et al., 2010]:

– case.in0 : EX OPTPBE EC LDA VX OPTPBE VC LDA
– case.innlvdw : kernel type 1 with Zab = −0.8491

I optB86b-vdW [Klimeš et al., 2011]:

– case.in0 : EX OPTB86B EC LDA VX OPTB86B VC LDA
– case.innlvdw : kernel type 1 with Zab = −0.8491

I rVV10 [Vydrov and Van Voorhis, 2010, Sabatini et al., 2013]:

– case.in0 : XC GGA X RPW86 EC PBE VC PBE
– case.innlvdw : kernel type 2 with b = 6.3 and C = 0.0093

I vdW-DF-cx [Berland and Hyldgaard, 2014]:

– case.in0 : XC GGA X LV RPW86 EC LDA VC LDA
– case.innlvdw : kernel type 1 with Zab = −0.8491

I rev-vdW-DF2 [Hamada, 2014] (probably one of the most general vdW-functionals, which
treats both, strongly and weakly bound systems and geometry and binding energies rea-
sonably well) (see [Tran et al., 2019]):
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– case.in0 : XC GGA X B86 R EC LDA VC LDA
– case.innlvdw : kernel type 1 with Zab = −1.887

I SCAN+rVV10 [Peng et al., 2016]:

– case.in0 : XC SCAN
– case.innlvdw : kernel type 2 with b = 15.7 and C = 0.0093

I PBE+rVV10L [Peng and Perdew, 2017]:

– case.in0 : XC PBE
– case.innlvdw : kernel type 2 with b = 10 and C = 0.0093

I PBEsol+rVV10s [Terentjev et al., 2018]:

– case.in0 : XC PBESOL
– case.innlvdw : kernel type 3 with b = 10, C0 = 0.0093, C1 = 0.5, C2 = 300

4.5.17 Self-consistent gKS MGGA

It is possible to perform self-consistent MGGA calculations using the generalised Kohn-Sham (gKS)
scheme. For implementation details, see [Doumont et al., 2022]. It is required to compile WIEN2k
with LibXC (see section 11.1.1) to use self-consistent MGGAs.

Note that the XC SCAN or XC TPSS keywords do not use the self-consistent gKS MGGAs. They
evaluate only the ground state energy using the MGGA, using the KS orbitals corresponding to the
PBE functional. Only using LibXC keywords XC MGGA X/C ???? will lead to a self-consistent gKS
MGGA calculation.

For the MGGA functionals listed in table 4.23), the setup is automatic via the init mgga script. It
will perform the following steps:

I If it is not yet present, create a case.inm tau file.
I Prompt the user to run one or more iterations (run(sp) -i ...) to generate the kinetic

energy density ‘tau’ required for MGGAs, and save the case.
I Set the LibXC keywords for the chosen functional in case.in0. In general we recommend

the regularized version of SCAN, i.e. R2SCAN.
I Create a case.in0 loc vsp input file using the appropriate (best known) auxiliary KS po-

tential (used for core and basis functions).
I If necessary, raise the GMAX parameter to the suggested value.

Functional family Auxiliary potential Auxiliary potential keywords
SCAN family (r2SCAN, r4SCAN, SCAN) RPBE VX RPBE VX RPBE
TPSS family (revTPSS, TPSS) RPBE VX RPBE VX RPBE
other family (B97MV, regTM) RPBE VX RPBE VX RPBE
MGGAC family (rMGGAC, MGGAC) RPBE VX RPBE VX RPBE
TASK family (mTASK, TASK) HCTH/407 VX HCTH407 VC HCTH407
HLE17 mRPBE VX MRPBE VC MRPBE

Table 4.23: MGGA functionals with support for automatic setup. For an exhaustive and up-to-
date list of all keywords, see the LibXC website https://www.tddft.org/programs/libxc/
functionals/.

An alternative initialization is possible using init mgga -taustart -dstart. In this case a
superposition of atomic kinetic energy densities is used as a starting point. This is the method of
choice if you want to do a gKS calculation without a prior GGA (PBE) run. (Right after init lapw
do init mgga lapw -taustart)

For computationally intense cases, the increase of GMAX can be overridden using the flag
-skipgmax. The suggested value that is set by the script is a quite ‘safe’ value, and for most

https://www.tddft.org/programs/libxc/functionals/
https://www.tddft.org/programs/libxc/functionals/
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cases not necessary. At the same time, if very high convergence is required one might still check if
the suggested value is sufficient.

If QTL-B warnings, or ‘Semicore band ranges too large’ errors may occur, init mgga -hdlo may
be used to set extra HDLO basis functions. This solves the problem in many cases.

For functionals that are not listed in the init mgga script, it will guide you through a man-
ual setup, which consists of the same steps outlined above. The difference is that the user is
prompted to edit the relevant input files manually (like the general init script). For readers inter-
ested in the manual setup, we strongly recommend to read section 2 of the implementation paper
[Doumont et al., 2022]. A few hints for the manual setup:

1. A current list of MGGAs included in LibXC can be found online on http://www.tddft.
org/programs/libxc/.

2. The self-consistent gKS MGGA implementation only works with ‘tau’-MGGAs, not with
laplacian-MGGAs. For a laplacian-MGGA, an error will be given.

3. Some MGGA potentials do not have an associated energy functional (e.g. (modified) Becke-
Johnson). For these, the gKS implementation is not applicable.

4. If the functional you want to use is not included in the script, we are not sure (yet) what is
the best choice for the auxiliary potential in case.in0 loc vsp is. RPBE (EX RPBE EC PBE
VX RPBE VC PBE) or PBE XC PBE are probably a good choice.

5. The best auxiliary potential is the one leading to the lowest variational total energy :ENE.
6. Use of HDLOs (see section 7.6) is recommended in case you are not sure what is the best

auxiliary potential.
7. Take care that there are no large QTL-B warnings in the scf files.

In some cases (specifically cases with vacuum regions in the cell, like surfaces or monolayers), and
with some functionals that are more difficult numerically (like non-regularized SCAN or TASK)
scf-convergence can be tricky. The following steps may help:

I Start from a well-converged KS calculation, if possible one with similar characteristics to
the MGGA (e.g. PBE for SCAN). Starting from a well-converged gKS calculation with a
numerically less-demanding MGGA (e.g. a regularized SCAN) may also work.

I Make sure energy parameters are correctly set. In some cases, shallow LOs (like O-2p) and
spheres with small Rmt can be problematic. Replacing them with HDLO can help. In rare
cases, RKmax needs to be restricted (eg. in Fe less than 9), otherwise ghostbands can occur.

I Make sure sphere sizes are properly chosen.
I If all else fails, use ‘PRATT’ mixing for both the density and the kinetic energy density, for at

least a couple of iterations, with the same mixing parameter (see section 7.13).

Forces are not available with gKS MGGA calculations.

http://www.tddft.org/programs/libxc/
http://www.tddft.org/programs/libxc/
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5.1 Job control (c-shell scripts)

In order to run WIEN2k several c-shell scripts are provided which link the individual programs to
specific tasks.

All available (user-callable) commands have the ending lapw so you can easily get a list of all
commands using

ls $WIENROOT/∗ lapw

in the directory of the WIEN2k executables. (Note: all of the more important commands have a link to a
short name omitting “ lapw”.) All these commands have at least one option, -h, which will print a
small help indicating purpose and usage of this command.

5.1.1 Main execution script (x lapw)

The main WIEN2kscript, x lapw or in short just x, executes a single WIEN2kprogram. First it
creates the corresponding program.def-file, where the connection between Fortran I/O-units
and filenames are defined. One can modify its functionality with several switches, modifying file
definitions in case of spin-polarized or tailoring special behaviour. All options are listed with the
help switch

x -h or x lapw -h

69
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With some of the options the corresponding input files may be changed temporarily, but are set
back to the original state upon completion. If a necessary input file does not exist for auxilliary
programs, it will created with some defaults and you should edit and adapt this file for your needs.

USAGE: x PROGRAMNAME [flags]

PURPOSE:runs WIEN executables: afminput,afmsim,aim,animxsf,arrows,broadening,
cif2struct,clmaddsub,clmcopy,clminter,convham,conv2prim,dftd3,dftd4,dipan,
dmftproj,dstart,eosfit,eosfit6,filtvec,findbands,fleur2wien,hex2rhomb,hf,
initxspec,irrep,joint,joinvec,kgen,kram,lapw0,lapw1,lapw2,lapw3,lapw5,
lapw7,lapwdm,lapwso,lcore,lorentz,lstart,mini,mixer,mstar,nlvdw,nn,
optimize,orb,pairhess,pes,plane,read_vorb_files,rendos,rhomb_in5,sgroup,
shifteig,spaghetti,struct2cif,struct2poscar,struct_afm_check,sumpara,
supercell,symmetry,symmetso,telnes3,tetra,txspec,wannier90,w2w,w2waddsp,
wplot,xspec,xyz2struct,3ddens,create_rho

FLAGS:
-f FILEHEAD -> FILEHEAD for name of struct & input-files
-t/-T -> suppress output of running time
-h/-H -> help
-d -> create only the def-file
-up -> runs up-spin
-dn -> runs dn-spin
-ud -> runs up/dn-crossterm
-sc -> runs semicore calculation
-p -> run lapw0/1/2/hf/so/dm/optic/dstart in parallel (needs .machines or

.processes file)
-scratch dir/ ->defines (and makes) $SCRATCH variable
-half -> run lstart/dstart/lapw0 for DFT-half
-hdlo -> run lstart and create p,d,f HDLOs in $file.in1_st
-grr -> lapw0 for mBJ, lmBJ or hf (using $file.in0_grr)
-eece -> for hybrid-functionals (lapw0,lapw2,mixer,orb,sumpara)
-band -> for lapw1/2/hf/joinvec bandstructures: uses *klist_band
-orb -> runs lapw1 with LDA+U/OP or B-ext correction, mixer with dmat
-it -> runs lapw1 with iterative diagonalization
-noHinv -> runs lapw1 with iterative diag. without Hinv
-noHinv0 -> runs lapw1 with iterative diag. writing new Hinv
-nohns-> runs lapw1 without HNS
-nmat_only-> runs lapw1 and yields only the matrixsize
-nmr -> runs lapw1 in NMR mode
-in1orig -> runs lapw2 but does not modify case.in1
-emin X -> runs lapw2 with EMIN=X (in $file.in2)
-all X Y -> runs lapw2 with ALL and E-window X-Y (in $file.in2)
-qtl -> runs lapw2 and calculates QTL
-alm -> runs lapw2 and calculates ALM,BLM
-almd -> runs lapw2 and calculates ALM,BLM in lapw2 for DMFT (Aichhorn)
-qdmft -> runs lapw2 and calculates charges including DMFT (Aichhorn)
-help_files -> runs lapw2 and creates case.helpXX files
-vresp-> runs lapw2/mixer and creates case.vrespval/sum (meta-GGA)
-tau--> for lstart,dstart,lapw2,lcore and mixer, creates case.tauval/sum (meta-GGA)
-fermi-> runs lapw2 with FERMI switch
-efg -> runs lapw2 with EFG switch
-so ->runs lapw2/dm/optic/spaghetti with def-file for spin-orbit calc.
-hf -> runs lapw2 with Hartree-Fock/hybrid vectors
-diaghf -> calculates only the diagonal elements of HF Hamiltonian
-nonself -> calculates hf with Ex only (no eigenvalues/vectors)
-mode1/2/3 -> modes 2 and 3 calculate hf with a better MPI scaling for memory
-nonself -> calculates hf with Ex only (no eigenvalues/vectors)
-newklist -> HF/hybrid-DFT calculation starting from a different k-mesh
-redklist -> HF/hybrid-DFT calculation with reduced k-mesh for the potential
-slater-> calculation of the Slater potential by the HF module
-kli -> calculation of the KLI potential by the HF module
-gllb -> calculation of the GLLB-SC potential
-gw -> write in case.gw the diagonal matrix elements of the HF/hybrid Hamiltonian for GW
-fbz -> runs kgen and generates a full mesh in the BZ
-fft -> runs dstart only up to case.in0_std creation
-super-> runs dstart and creates new_super.clmsum (and not $file.clmsum)
-lcore-> runs dstart with $file.rsplcore (produces $file.clmsc)
-val -> runs lapw5/3ddens with normalization factor for files case.clmval,vtotal,vcoul,r2v
-tot -> runs lapw5/3ddens with normalization factor for files case.clmsum
-pot -> runs lapw5/3ddens with vtotal-files as input
-coulomb -> runs lapw5/3ddens with vcoul-file as input
-exchange -> runs lapw5/3ddens with r2v-files as input
-exchange2-> runs lapw5/3ddens with r2v2-files as input
-halfr2v -> runs lapw5/3ddens with r2v_half-files as input
-sub -> replaces "add" by "sub" in case.in3d/in5 for spin-density plots
-add -> replaces "sub" by "add" in case.in3d/in5 for density plots
-none -> replaces "add" by "non" in case.in3d/in5 for up-density plots
-sel -> use reduced vector file in lapw7
-settol 0.000x -> run sgroup, mstar or xyz2struct with different tolerance
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-sigma-> run lstart with case.inst_sigma (autogenerated) for diff.dens.
-dftd3-> run mixer with dftd3 forces
-dftd4-> run mixer with dftd4 forces
-nlvdw -> run lapw0 with -nlvdw flag (adding the vdW-potential)
-lmbj -> run nlvdw with -lmbj flag (creates local g for lmBJ potential)
-rxes-> run tetra using case.rxes weight file for RXES-spectroscopy.
-rxesw E1 E2-> run tetra and create case.rxes file for RXES for energies E1-E2
-enefile -> spaghetti+tetra with case.energy instead case.qtl (only tot-DOS)

joinvec: only join case.energy_* files
-delta-> run arrows program with difference between two structures
-copy -> runs pairhess and copies .minpair to .minrestart and .minhess
-telnes -> run qtl after generating case.inq based on case.innes
-xspec -> run broadening with case.xspec instead of case.elnes
-pes -> run broadening with case.pes1 instead of case.elnes
-txt -> runs cif2struct using case.txt (see UG)
-pp -> run wannier90 in "preprocessing mode"
-wf N -> run wplot for Wannier function N
-efermi EF -> run findbands (unit:Ryd) / shifteig (unit:eV) with Fermi energy EF
-emax Y -> for findbands
USE: x -h PROGRAMNAME for valid flags for a specific program

Note: To make use of a scratch file system (usually a ”local” file system for reducing the network or central
fileserver load), you may specify such a filesystem in the environment variable SCRATCH (it may already
have been set by your system administrator and must exist on all your nodes) or using the -scratch
switch (directory will be created automatically if it does not exist). However, you have to make sure that
there is enough disk-space in the SCRATCH directory to hold your case.vector* and case.help*
files.

5.1.2 Create the master input file case.struct (makestruct lapw)

The primary input file for a case is called case.struct. It can be created by the Struct Genera-
tor of w2web, by some utilities like cif2struct or xyz2struct or using an interactive script
makestruct lapw. This script asks for lattice-type or spacegroup, atoms and their positions, and
produces an intermediate file datastruct. The auxilliary programs Tmaker and setrmt lapw
converts this into init.struct, which must be copied to the proper location/filename by the
user.

makestruct lapw was provided by Morteza Jamal (m jamal57@yahoo.com) and Peter Blaha.

5.1.3 Job control for initialization (init lapw)

In order to start a new calculation, one should make a new directory and run all calculations from
there. At the beginning one must provide at least one file, namely case.struct (see 4.3). This
can be created in W2web (see quick-start, Sec. 3), the makestruct lapw script (see 5.1.2), or from a
cif, xyz or poscar file (see 9.7 and 9.32).

The script init lapw runs a series of programs either step by step (when using the -m switch),
or - highly recommended - in batch mode (default). The necessary case.inst will be created
automatically on the “fly”, only for spin-polarized calculations with special magnetic order (e.g.
antiferromagnetic) it must first be created manually by instgen lapw -ask ( see 6.4.3).

init lapw is described briefly in chapter 4.5 and the manual step-by-step mode in detail in “Get-
ting started” for the example of TiC (see chapter 3).

As mentoned above, the batch-mode is highly recommended (and now the default), since it sets
(semi-)automatically many computational parameters in the various input files, which can be cus-
tomized using several switches. You can get help about all of them with switch -h.

init lapw -h

mailto:m_jamal57@yahoo.com
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PROGRAM: /zeus/WIEN2k/init_lapw
PURPOSE: initialisation of WIEN2k calculations
to be called within the case-directory
needs case.struct file
USAGE: init_lapw [OPTIONS] [FLAGS]
FLAGS:
-h/-H ->help
-m ->manual step-by-step mode (not recommended anymore)
-b ->batch (non-interactive) mode (default, all possible options are

listed below, SGROUP is always ignored)
-sp ->select spin-polarized calculation
-nodstart -> creates new input files, but no case.clmsum (assuming you

already have a converged calculation)
-nokshift -> produces an unshifted k-mesh (including Gamma)
-nometal-> reduces k-mesh by factor 10
-hdlo -> set HDLOs in lstart (case.in1)
-nohdlo -> do not set HDLOs in lstart (case.in1) (overwrites -prec 2/3 setting)

OPTIONS:
-f FILEHEAD -> FILEHEAD for name of struct & input-files
-prec X -> set precision 0/1/2/3/0n/1n/2n/3n (default:1; "n" means

no metal for reduced k-mesh)
-red X -> RMT reduction by X % or with X=Si:2.0,O:1.6 (default: RMT not changed)
-vxc X -> VXC option (default: PBE; (LDA, WC, PBESOL))
-fftfac X -> Enhancement factor of FFT grid (default: automatic)
-fft X Y Z -> sets FFT grid to X Y Z (grid dimensions in lapw0, default: automatic)
-autofft -> sets FFT grid to -1 -1 -1 (grid determined by lapw0)
-ecut X -> energy separation (or Q/sphere) between core/valence (default: -6.0 Ry)
-rkmax X -> RKMAX (default: automatic)
-lmax X -> LMAX (default: 10)
-lvns X -> LVNS_max (default: automatic)
-gmax X -> GMAX (default: automatic)
-fermit X -> use TEMP with smearing by X Ry (default: TETRA)
-fermits X -> use TEMPS with smearing by X Ry (default: TETRA)
-numk X -> use X k-points in full BZ (default: automatic);

or: 0 NX NY NZ (with unshifted mesh) or: -1 delta-K
-s PROGRAM -> in manual mode: start with PROGRAM ($next)
-e PROGRAM ->in manual mode: exit after PROGRAM ($stopafter)

All actions of this script are logged in short in :log and in detail in the file case.dayfile, which
also gives you a “restart” option when problems occurred in manual mode (-s PROGRAM).

init lapw may produce various WARNING or ERROR messages, when the default initialization
might be unsave. Ignoring ERRORS and in many cases also WARNINGS during the execution of
this script, will most likely lead to errors at a later stage. Neglecting warnings about core-leakage
creates .lcore, which directs the scf-cycle to perform a superposition of core densities, but usually
you should rerun with a lower -ecut option (or your RMT spheres are not set properly).

init lapw runs by default in “batch” mode (non-interactive). We recommend the batch mode
in all cases once the symmetry and equivalency of atomic positions are correct for a new case
(eventually run x nn, sgroup, symmetry first, accept eventually the modifications of the
case.struct file and make sure the symmetry is correct before starting the initialization in batch
mode, because changes to case.struct by nnwill be accepted, but by sgroupwill be neglected).

Using -prec X (default prec=1) the scripts sets all input parameters according to the selected
precision (select ”n” when you know that your case is non-metallic for reduced k-mesh).

I 0/0n: for big (surface) calculations and possible long position optimizations. Should be
checked later on.

I 1/1n: default, should be save for bands or DOS
I 2/2n: highly accurate also for total energies, reduces RMTmax to 2.35, sets HDLOs and avoids

core-leakage
I 3/3n: highest precision, for lattice parameters with 3 digits after the comma

You can supply various options and select spin-polarization or XC-potential. The automatic set-
tings for RKmax, l-max, Lvns-max (nonspherical matrix elements for large spheres), HDLOs,
GMAX, k-mesh, FFT-grids in lapw0 or the ”Fermi-method” can be overwritten by the correspond-
ing options. For 2D cases TEMP instead of TETRA will be selected automatically.
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Once you have a scf solution (and have ”saved” the results), you can rerun init lapw with higher
precision and the -nodstart switch, to create a more accurate input (but continue the scf with the
previously converged density).

Please check the terminal output for ERRORS and WARNINGS !!!

5.1.4 Job control for scf-iterations (run lapw or runsp lapw)

In order to perform a complete SCF calculation or even perform both, a optimization of internal
atomic positions and a SCF calculation simultaneously, several types of scripts are provided with
the distribution. For the specific flow of programs see chapter 4.5. For more information on atomic
position optimization see chapter 5.3.2.

I For non-spinpolarized calculations use: run lapw,
I for spin-polarized calculations use: runsp lapw.
I for antiferromagnetic calculations you can use: runsp lapw or runafm lapw (the latter re-

quires an additional (complicated) input file, but can save some cpu-time)
I for FSM (fixed-spin moment) calculations use: runfsm lapw
I for a spin-polarized setup, where you want to constrain the moment to zero (e.g. for LDA+U

calculations) use: runsp c lapw

Cases with/without inversion symmetry and with/without semicore or core states are handled au-
tomatically by these scripts. All activities of these scripts are logged in short in :log (appended)
and in detail together with convergence information in case.dayfile (overwriting the old “day-
file“). You can always get help on its usage by invoking these scripts with the -h flag.

run lapw -h

PROGRAM: /zeus/lapw/WIEN2k/bin/run_lapw

PURPOSE: running the nonmagnetic scf-cycle in WIEN
to be called within the case-subdirectory
has to be located in WIEN-executable directory

USAGE: run_lapw [OPTIONS] [FLAGS]

OPTIONS:
-cc LIMIT -> charge convergence LIMIT (0.0001 e)
-ec LIMIT -> energy convergence LIMIT (0.0001 Ry)
-fc LIMIT -> force convergence LIMIT (1.0 mRy/a.u.)
.str LIMIT-> stress convergence LIMIT (0.1 GPa)

default is -ec 0.0001; multiple convergence tests possible
-e PROGRAM -> exit after PROGRAM ()
-f FILEHEAD -> alternative FILEHEAD for all files (instead of dir name)
-i NUMBER -> max. NUMBER (40) of iterations
-s PROGRAM -> start with PROGRAM ()
-r NUMBER -> restart after NUMBER (99) iterations (touch .restart)
-fd NUMBER -> force full diag after NUMBER iterations (touch .fulldiag)
-nohns NUMBER ->do not use HNS for NUMBER iterations
-in1new N -> create "new" in1 file after N iter (write_in1 using scf2 info)
-ql LIMIT -> select LIMIT (0.05) as min.charge for E-L setting in new in1
-qdmft NP -> including DMFT from Aichhorn/Georges/Biermann running on NP proc
-scratch dir/ -> sets (and creates) scratch directory (for vector files)

FLAGS:
-h/-H -> help
-I -> with initialization of in2-files to "TOT"
-NI -> does NOT remove case.broyd* (default: rm *.broyd* after 60 sec)
-p -> run k-points in parallel (needs .machine file [speed:name])
-it -> use iterative diagonalizations
-it1 -> use iterative diag. with recreating H_inv (after basis change)
-it2 -> use iterative diag. with reinitialization (after basis change)
-noHinv -> use iterative diag. without H_inv
-vec2pratt -> use vec2pratt instead of vec2old for iterative diag.
-grid -> test grid topologies (1/2 iteration) and use the faster one

(only for MPI-parallel with non-squared grids)
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-so -> run SCF including spin-orbit coupling
-renorm-> start with mixer and renormalize density
-in1orig-> if present, use case.in1_orig file; do not modify case.in1
-half -> DFT-half calculation
-hf -> HF/hybrid-DFT calculation
-diaghf -> non-selfconsistent HF with diagonal HF only (only e_i)
-mode1/2/3 -> modes 2 and 3 calculate hf with a better MPI scaling for memory
-nonself -> non-selfconsistent HF/hybrid-DFT calculation (only E_x(HF))
-newklist -> HF/hybrid-DFT calculation starting from a different k-mesh
-redklist -> HF/hybrid-DFT calculation with a reduced k-mesh for the potential
-slater-> calculation of the Slater potential by the HF module
-kli -> calculation of the KLI potential by the HF module
-gllb -> calculation of the GLLB-SC potential
-gw -> write in case.gw the diagonal matrix elements of the HF/hybrid

Hamiltonian for GW
-dftd3 -> calculate the dispersion energy with the DFT-D2 or DFT-D3 method
-dftd4 -> calculate the dispersion energy with the DFT-D4 method
-nlvdw -> include corrections due to nonlocal van der Waals functional
-lmbj -> to calculate the lmBJ potential
-min -> force optimization using MSR1a

CONTROL FILES:
.lcore runs core density superposition producing case.clmsc
.stop stop after SCF cycle
.minstop in MSR1A mode(structure optimization) switches to MSR1
.minstart starts MSR1a minimization during scf run (deletes broyd* files)
.fulldiag force full diagonalization
.noHinv remove case.storeHinv files
case.inm_tau activates calculation of tau files for meta-GGAs
case.inm_vresp activates calculation of vresp files for meta-GGAs
case.in0_grr activates a second call of lapw0 (mBJ pot., or E_xc analysis)

ENVIRONMENT VARIBLES:
SCRATCH directory where vectors and help files should go

Additional flags valid only for magnetic cases (runsp lapw) include:

-dm -> calculate the density matrix (when -so is set, but -orb is not)
-eece -> use "exact exchange+hybrid for correlated electrons" methods
-orb -> use LDA+U, OP or B-ext correction
-orbc -> use LDA+U correction, but with constant V-matrix
-noorbdu-> use LDA+U without crossterms up-dn (needs also -so)
-orbext -> use LDA+U and B-ext corrections simultaneously
-eeceext -> use EECE and B-ext corrections simultaneously

.forceorb uses unmixed case.vorb* in next iter (-eece)

.forcedmat uses unmixed case.dmat* in next iter (-orb)

Calling run lapw (after init lapw) from the subdirectory case will perform up to 40 iterations
(or what you specified with switch -i) unless convergence has been reached earlier. You can choose
from four convergence criteria,

I -ec (the total energy convergence is the default and is set to 0.0001 Ry for at least 3 iterations),
I -fc (magnitude of force convergence for 3 iterations, ONLY if your system has “free” struc-

tural parameters!)
I -cc (charge convergence, just the last iteration),
I -str (stress convergence, for details see Sect. 5.3.1 )
I and any combination can also be specified.

Be careful with these criteria, different systems will require quite different limits (e.g. fcc Li can be
converged to µRy, a large unit cell with heavy magnetic atoms only to 0.1 mRy). You can stop the
scf iterations after the current cycle by generating an empty file .stop (use eg. touch .stop in
the respective case-directory).

The scf-cycle creates case.broyd* files which contain the ”charge-history”. Once run lapw has
finished, you should usually ”save lapw” (see below) the results. When you continue with an-
other run lapw without ”save lapw” (because the previous run did not fulfill the convergence
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criteria or you want to specify a more strict criterium) the ”broyden-files” will be deleted unless
you specify -NI.

With -e PROGRAM you can run only part of one scf cycle (e.g. run lapw0, lapw1 and lapw2),
with -s PROGRAM you can start at an arbitrary point in the scf cycle (e.g. after a previous cycle
has crashed and you want to continue after fixing the problem) and continue to self-consistency.
Before mixer is invoked, case.clmsum is copied to case.clmsum old, and the final “important“
files of the scf calculation are case.clmsum and case.scf.

Invoking

run lapw -I -i 30 -fc 0.5

will first set in case.in2 the TOT-switch (if FOR was set) to save cpu time, then run up to 30 scf cycles
till the force criterion of 0.5 mRy/a.u. is met (for 3 consecutive iterations). Then the calculation of
all terms of the forces is activated (setting FOR in case.in2) for a final iteration.

An additional switch -min will activate the optimization of the internal positions using the MSR1a
option in case.inm (see Sec. 5.3.2). Note, this option can take several hundreds of scf-cycles in
more complicated cases.

By default the file case.in1 is updated after lapw2 and the current Fermi-energy is inserted.
This will force lapw1 to use instead of the default energy parameters (0.30) an energy “EF −0.2”.
The switch -in1orig can be used to keep the present case.in1 file unmodified (or to copy
case.in1 orig back after -in1new).

The switch -in1new N preserves for N iteration the current case.in1 file. After the first N
iterations write in1 lapw is called and a new case.in1 file is generated, where the energy pa-
rameters are set according to the :EPLxx and :EPHxx values of the last scf iteration and the -ql
value (see sections 4.4 and 7.6). In this way you may select in some cases better energy-parameters
and also additional LOs to improve the linearization may be generated automatically. Note, how-
ever, that this option is potentially unsave and dangerous, since it may set energy-parameters of
LOs and APW+lo too close (leading to ghostbands) or in cases where you have a “bad” last iter-
ation (or large changes from one scf iteration to the next. The original case.in1 file is saved in
case.in1 orig and is used as template for all further scf-cycles.

Parallelization is described in Sec. 5.5.

Iterative diagonalization, which can significantly save computer time (in particular for cases with
“few electrons” (like surfaces) and “large matrices (larger than 2000)” a factor 2-5 ! is possible),
is described in Sec. 7.6. It needs the case.vector.old file from the previous scf-iteration
(and this file is created from case.vector when the -it switch is set) and an inverse of a
previous Hamiltonian (H−10 ) stored in case.storeHinv. When you change the Hamiltonian
significantly (changing RKmax or local orbitals), reinitialize the iterative diagonalization either
by “touch .fulldiag” (performs one full diagonalization) or “touch .noHinv” (recreates
case.storeHinv files) or using the -it1|-it2 switch.

You can save computer time by performing the first scf-cycles without calculating the non-spherical
matrix elements in lapw1. This option can be set for N iterations with the -nohns N switch.

The presence of the file .lcore directs the script to superpose the radial core densities using
dstart and generating case.clmsc. It is created automatically during init lapwwhen charge-
leakage warnings are ignored. This option allows to reduce the number of semi-core states, but still
keeping a good charge density. dstart can also run in mpi- or OpenMP-parallel mode, otherwise
it can be slow for big cases.

The presence of the file case.in0 grr activates a second call of lapw0, which is necessary for
modified Becke-Johnson potentials (see Section 4.5.11) or Exc analysis.
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It is also possible to calculate exact exchange (Hartree-Fock) and perform full hybrid-DFT calcu-
lations. However, such calculations are very expensive. They are activated using the -hf switch.
More information can be found in Sec. 4.5.9

If you have a previous scf-calculation and changed lattice parameters or positions (volume opti-
mization or internal positions minimization), one could use -renorm to renormalize the density
prior to the first iteration., but the recommended way is to use clmextrapol lapw.

For magnetic systems which are difficult to converge you can use the script runfsm lapw -m M
(see section 4.5.3) for the execution of fixed-spin moment (FSM) calculations.

5.1.5 Job for initialization and scf-cycle with different precision (run123 lapw)

This script performs an initialization (init lapw) and scf-cycle (run lapw) with different preci-
sion options. It only needs a case.struct file as input. You can always get help on its usage by
invoking this script with the -h flag.

run123 lapw -h

run123_lapw performs init_lapw and run_lapw with different precision

run123_lapw [ runopt initopt -noprec [1-2] -prec [1-3] -numk2 k-mesh2-params -h ]

It runs scf cycles with precision options from:
-noprec XX+1 (default 0) up to -prec XX (default 3)

and saves them under prec1, prec2, prec3 (prec3k)
runopt: all valid options for run_lapw (like -p, -i 100, -ec 0.000001, ..)
initopt: only supported init_lapw options:

(-red X, -hdlo, -nokshift, -fermit(s) 0.00x, -numk XX, -fft X Y Z)
-numk2 k-mesh-params reruns prec3 with different (better) k-mesh

In parallel mode (-p) it will either use a .machines file (if present) or use
$WIENROOT/SRC templates/run123.machines, which is configured for one 8-core cpu.

5.1.6 Job control for iteration with the Slater/SmBJ/KLI potentials
(run vnonloc lapw)

In order to achieve scf convergence with the Slater/SmBJ/KLI potentials (see sec. 4.5.10) it is nec-
essary to use the script run vnonloc lapw. The script run vnonloc lapw runs the calculation
with an inner/outer loops procedure similar to the one described in [Betzinger et al., 2010] for the
HF method. Within an inner scf loop, the Slater/SmBJ/KLI potential is kept fixed (frozen), which
leads to rather fast (and very cheap) convergence (the files are saved under a name which contains
”fixed”). The outer loop consists of updating the Slater/SmBJ/KLI potential (the saved files are
named with ”updated”) right after an inner scf loop. For spin-polarized calculations, the flag ”-sp”
has to be used. Many of the options and flags of run(sp) lapw (-ec, -cc, etc.) can be used with
run vnonloc lapw. All options and flags can be listed with the -h flag:

run vnonloc lapw -h

PROGRAM: run_vnonloc_lapw

PURPOSE: to run the inner/outer loops procedure to achieve scf convergence with the Slater/SMBJ/KLI potentials

USAGE: run_vnonloc_lapw [OPTIONS] [FLAGS]
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OPTIONS:
-cc LIMIT -> charge convergence LIMIT (0.0001 e)
-ec LIMIT -> energy convergence LIMIT (Ry)
-fc LIMIT -> force convergence LIMIT (1.0 mRy/a.u.)

default is -ec 0.0001; multiple convergence tests possible
-i NUMBER -> max. NUMBER (40 by default) of iterations for the inner loop
-iout NUMBER -> max. NUMBER (100 by default) of iterations for the outer loop
-in1new N -> create "new" in1 file after N iter (write_in1 using scf2 info)
-mix -> use another mixing factor for the outer loop (default is 1)

FLAGS:
-h/-H -> help
-so ->run SCF including spin-orbit coupling
-sp -> for spin-polarized calculation
-NI -> does NOT remove case.broyd* (default: rm *.broyd* after 60 sec)
-p -> run k-points in parallel (needs .machine file [speed:name])
-in1orig-> if present, use case.in1_orig file; do not modify case.in1

5.1.7 Job control for calculating the exchange discontinuity of the GLLB-SC
method (run deltagllb lapw)

The script run deltagllb lapw allows to calculate the exchange discontinuity ∆x of the GLLB-
SC method (see sec. 4.5.13) in a convenient way. First, one iteration is done, and then the lowest
occupied orbital is calculated with x lapw2 -all X Y, and finally x lapw0 is executed to cal-
culate ∆x (keyword :DELTAXC in case.scf0).

For spin-polarized calculations, the flag ”-sp” has to be used. Most of the options and flags of
run(sp) lapw (except -ec, -cc, and -fc) can be used with run deltagllb lapw. All options and
flags can be listed with the -h flag:

run deltagllb lapw -h

PROGRAM: run_deltagllb_lapw

PURPOSE: to run one iteration in order to calculate the derivative
discontinuity of the GLLB-SC potential

USAGE: run_deltagllb_lapw [OPTIONS] [FLAGS]

OPTIONS:
-in1new N -> create "new" in1 file after N iter (write_in1 using scf2 info)
-scratch dir -> set scratch directory (for vector files)

FLAGS:
-h/-H -> help
-sp -> for spin-polarized calculation
-p -> run k-points in parallel (needs .machine file [speed:name])
-it -> use iterative diagonalization
-it1 -> use iterative diag. with recreating H_inv (after basis change)
-it2 -> use iterative diag. with reinitialization (after basis change)
-noHinv -> use iterative diag. without H_inv
-so -> run SCF including spin-orbit coupling
-in1orig-> if present, use case.in1_orig file; do not modify case.in1
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5.2 Utility scripts

5.2.1 Save a calculation (save lapw)

After self-consistency has been reached, the script

save lapw head of save filename

saves case.clmsum, case.scf, case.dmat, case.vorb and case.struct as well as all in-
puts (case.in* under the new name and removes the case.broyd* files. Now you are ready to
modify structural parameters or input switches and rerun run lapw, or calculate properties like
charge densities (lapw5), total and partial DOS (tetra) or energy bandstructures (spaghetti).

For more complicated situations, where many parameters will be changed, we have extended
save lapw so that calculations can not only be saved under the head of save filename but
also a directory can be specified. Except when using the -o switch, all input files will be saved as
well (and can be restored using restore lapw).

Options to save lapw can be seen with

save lapw -h

Currently the following options are supported
-h help
-o old scheme, does not save input files
-f force save lapw to overwrite previous saves of the same name
-d directory save calculation in directory specified
-nodel do not delete scf, broyd files (during running scf-cycle)
-s silent operation (no output on screen)
-band saves case.output1/so, qtl, irrep and spaghetti files
-dos saves case.int, qtl and dos files
-eels saves elnes, innes, broadspec and qtl files
-optic saves case.symmat,joint,epsilon,sigma,eloss,absorp,klist,kgen,inop,injoint,inkram ... files
-xspec saves xspec, corewfx, m1/m2, inxs, qtl and int files

Note: for DOS, bandstructure, xspec, eels or optic, there is no corresponding restore lapw op-
tion, but files must be handled by hand.

5.2.2 Restoring a calculation (restore lapw)

To restore a calculation the script restore lapw can be used. This script restores the struct,
clmsum, vorb and dmat files as well as all input files. Note: The input files will only be restored
when save lapw -d was used, i.e. when you have saved a calculation in an extra directory.

After restore lapw you can continue and either run an scf cycle (run lapw) or recreate the
scf-potential (x lapw0) and the corresponding eigenvectors (x lapw1) for further tasks (DOS,
electron density,...).

Options to restore lapw are:
-h help
-f force restore lapw to overwrite previous files
-d directory restore calculation from directory specified
-s silent operation (no output)
-t only test which files would be restored
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5.2.3 Remove unnecessary files (clean lapw)

Once a case has been completed you can clean up the directory with this command. Only the most
important files (scf, clmsum, struct, input and some output files) are kept. It is very important to
use this command when you have finished a case, since otherwise the large vector and helpXX files
will quickly fill up all your disk space.

Options to clean lapw are:
-h help
-s silent operation (no output)
-r recursively clean all directories starting from the current one

5.2.4 Migrate a case to/from a remote computer (migrate lapw)

This script migrates a case to a remote computer (to be called within the case-dir). Needs working
ssh/scp without password; local and remote case-dir must have the same name.

Call it within the desired case-dir as:

migrate lapw [FLAGS OPTIONS] [user@]host:path/case-dir

with the following options:

-put -> transfer of files to a remote host (default)
-get -> transfer of files from a remote host

-all -> the complete directory is copied
-start -> only files to start an scf cycle are copied (default for put)
-end -> only new files resulting from an scf cycle are copied

(default for get)
-save savedir -> "save_lapw -d save_dir" is issued and only save_dir is copied

FLAGS:
-h -> help
-clean -> a clean_lapw is issued before copying
-r -> files in source directory are removed after copying
-R -> source directory (and all files) are removed after copying
-s -> do it silent (in batch mode)
-z -> gzip files before scp (slow network)

5.2.5 Set R-MT values in your case.struct file (setrmt lapw)

This perl-script executes x nn and uses its output to determine the atomic sphere radii (obeying
recommended ratios for H, sp-, d- and f- elements). It is called automatically within init lapw or
you may call it in the STRUCTEDITOR@w2web or explicitly using:

setrmt lapw [case] [-r X ] [-a XX:A,YY:B,... ] [-orig]

where case gives the head of the case.struct file (default: directory name). You may specify
a reduction (-r) of the RMTs by X percent in order to allow for structural optimizations. If you
already know which RMT values you want to use for a certain element, you can fix them using
eg. (-a Mg:1.9). The new setrmt lapw version knows optimal RKmax values for all atoms and
makes a finer tuning of the different RMTs. with (-orig) you can go back to the old scheme which
distinguishes only between H, sp- and d-elements. It creates case.struct setrmt with the
modified RMTs.
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5.2.6 Generate case.inst (instgen lapw)

This script generates case.inst from a case.struct file. It is used automatically in init lapw,
if case.inst is not present. Using some options (see below) it allows to define the spin-state of
all/certain atoms. Note: the label “RMT” is necessary in case.struct.

instgen_lapw [-h -s -up -dn -nm -ask -f case]
-h: generate this message
-s: silent operation (do not ask)
-up: generates spin-up configuration for all atoms (default)
-dn: generates spin-dn configuration for all atoms
-nm: generates non-magnetic configuration for all atoms
-ask: asks for each atom which configuration it should generate
-f: case name (instead of directory name)

5.2.7 Check for running WIEN jobs (check lapw)

This script searches for .running.* files within the current directory (or the directory specified
with “-d full path directory”) and then performs a ps command for these processes. If the specified
process has not been found, it removes the corresponding .running.* file after confirmation
(default) or immediately (when “-f” has been specified).

5.2.8 Cancel (kill) running WIEN jobs (cancel lapw)

This script searches for .running.* files within the current directory (or the directory specified
with “-d full path directory”) and then kills the corresponding process after confirmation (default)
or immediately (when “-f” has been specified). It is particular useful for killing “k-point parallel”
jobs.

5.2.9 grepline lapw

This scripts allows you to get a certain quantity from several scf files for comparison (for instance
the total energy :ENE in the saved scf-files of a volume-optimization calculation). Using

grepline lapw :label ’filename*.scf’ lines for tail [options] or

grepline :label ’filename*.scf’ lines for tail [options]

you can get a list of a quantity “:label” (e.g. :ENE for the total energy, :DIS, :FR, :FGLxxx,
:MMT, :MMIxxx, ... are other useful possible labels) from several scf files at once. Specification
of “lines for tail” .gt. 1 allows for convergence check too.

”options” can be -h (help), -s (silent and avoiding the first line), -s0 (silent) and grep options like
-B1 or -A1 (usefull to grep for :MBJ and list the line afterwards).



5.2. UTILITY SCRIPTS 81

5.2.10 scfmonitor lapw

This program was contributed by:

	
Hartmut Enkisch
Institute of Physics E1b
University of Dortmund
Dortmund, Germany
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

It produces a plot of some quantities as function of iteration number (a maximum of 6 quantities is
possible at once) from the case.scf file as specified on the commandline using analyse lapw
and GNUPLOT. This plot is updated in regular intervals.

You can call scfmonitor lapw using:

scfmonitor lapw [-h] [-i n] [-f case.scf] [-p] arg1 [arg2 ..
arg6]

-h help switch
-i n show only the last n iterations
-f scf-file use "scf-file" instead of the default "case.scf"
-p produces file "scfmonitor.png" instead of X-window plot
arg1,... arguments to monitor (like ":ENE" or ":DIS" , see analyse_lapw )

The scfmonitor can also be called directly from w2web using the ”Analyse” tool.

Note: It does not make sense to start scfmonitor before the first cycle has finished because no case.scf
exists at this point.

5.2.11 analyse lapw

The script analyse lapw is usually called from scfmonitor lapw. It ”greps” from an scf-file
the specified arguments and produces analyse.out.

analyse lapw is called using:

analyse lapw [-h] scf-file arg1 [arg2 arg3 arg4 arg5 arg6]

-h help switch
scf-file "scf-file" to analyse (there’s no default "case.scf" !)
arg1,... arguments to analyse:

atom independent: :ENE :DIS :FER :MMT :VOL :GAP :CONSTRAINT
atom iii dependent: :CTOiii :CUPiii :CDNiii :NTOiii :NUPiii :NDNiii

:DTOiii :DUPiii :DDNiii :RTOiii :EFGiii :HFFiii
:MMIiii :VCOUL

vector quantities: :FORiii[x/y/z] :POSiii[x/y/z] :FGLiii[x/y/z] :FGCiii(x/y/z)
where magnitude z z is the default

For vector quantities like :FGLiii or :POSiii (useful with case.scf mini) one can specify the re-
spective coordinate by adding x/y/z to the corresponding labels.
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5.2.12 Extract critical points from a Bader analysis (extractaim lapw)

This script extracts the critical points (CP) after a Bader analysis (x aim ) from case.outputaim.
It sorts them (according to the density), removes duplicate CPs, converts units into Å, e/Å3, ... and
produces critical points ang.

It is used with: extractaim lapw case.outputaim

5.2.13 Check parallel execution (testpara lapw)

testpara lapw is a small script which helps you to determine an optimal selection for the file
.machines for k-point parallel calculations (see sec. 5.5).

5.2.14 Check parallel execution of lapw1 (testpara1 lapw)

testpara1 lapw is a small script which determines how far the execution of lapw1para has
proceeded.

5.2.15 Check parallel execution of lapw2 (testpara2 lapw)

testpara2 lapw is a small script which determines how far the execution of lapw2para has
proceeded.

5.2.16 Create case.int file (for DOS) (configure int lapw)

This script creates the input file case.int for the program tetra and allows to specifiy which
partial DOS (atom, l and m) should be calculated. The original version was provided by Morteza
Jamal (m jamal57@yahoo.com).

You can specify interactively:

total (for plotting ’Total Dos’)
N (to select atom N)

s,p,d,... (to select a set of PDOS for previously selected atom N)
use labels as listed in the header of your case.qtl file)

end (for exit)

At the end, band-ranges and EF are listed and you can edit case.int for different E-grid or DOS-
summations.

There is also a ”batch” (non-interactive) mode:

configure_int_lapw -b total 1 tot,d,d-eg,d-t2g 2 tot,s,p end

which will prepare case.int (eg. for the TiC example) with:

tic #Title
-1.000 0.00250 1.200 0.003 #Emin, DE, Emax, Gauss-Broad

8 #Number of DOS
0 1 total-DOS
1 1 tot-Ti
1 4 d-Ti

mailto:m_jamal57@yahoo.com
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1 5 d-eg-Ti
1 6 d-t2g-Ti
2 1 tot-C
2 2 s-C
2 3 p-C

5.2.17 init orb lapw

init orb lapw helps you to initialize calculations using orbital potentials like DFT+U and EECE
with/without an additional external magnetic field (based on an idea of William Lafargue-Dit-
Hauret, william.lafargue-dit-hauret@uliege.be). It creates all required input files (case.inorb,
case.indm, case.ineece) and allows to modify them according to your needs (specification
of atoms, orbitals, U+J values). It is called using

init orb lapw -orb / -eece [-b -f -c] or

init orb -orb / -eece [-b -f -c]

Either the option -orb or -eece is required. -b adds an optional external magnetic field; -f forces
a recreation of previously existing input files; -c is necessary only if you have inversion symme-
try, but want to include spin-orbit (-so) in the calculations (otherwise a complex case is detected
automatically).

5.2.18 init so lapw

init so lapw helps you to initialize the calculations for spin-orbit coupling. It helps together
with make inso lapw (based on an idea of Morteza Jamal, m jamal57@yahoo.com) to cre-
ate/modify all required input files (case.inso, case.in1, case.in2c). In a spinpolarized
case SO may reduce symmetry or equivalent atoms may become non-equivalent, and the script
calls symmetso and will help you to find proper symmetries and setup the respective input files.
It is called using

init so lapw or

init so

and you should carefully follow the instructions and explanations of the script and the explanations
for case.inso given in section 7.8. Since forces are not correct for atoms with SO, it can be very
useful to suppress SO for light atoms (eg. the O-atoms in UO2), because then one can optimize the
O-positions.

5.2.19 init hf lapw

init hf lapw helps you to initialize the calculations for hybrid-DFT functionals. It creates several
files (case.inhf, case.in0 grr), selects YS-PBE0 (see [Tran and Blaha, 2011]), changes some
input files (case.in0) and calls run kgenhf lapw to generate the k-mesh for the HF calculation.
It takes -up for spin-polarized cases.

For details of hybrid-DFT calculations see 4.5.9.

mailto:william.lafargue-dit-hauret@uliege.be
mailto:m_jamal57@yahoo.com
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5.2.20 init mbj lapw

init mbj lapw helps you to initialize the calculations for the mBJ (see [Tran and Blaha, 2009]) or
lmBJ (see [Rauch et al., 2020]) potential, which usually requires a couple of steps done in proper
order.

A proper sequence would be:

I init mbj lapw
I run lapw -i 1
I init mbj lapw
I save lapw xxxx pbe
I run lapw

The first call to init mbj lapw creates case.inm tau and sets ”R2V” in case.in0. The sec-
ond call of init mbj lapw creates case.in0 and case.in0 grr (and case.innlvdw for lmBJ)
with the proper input for (l)mBJ. It also lets you select parameters of the original (l)mBJ potential,
or the later adaption to semiconductors or insulators, or the original BJ method.

For details of (l)mBJ calculations see Secs. 4.5.11 and 4.5.12.

5.2.21 init mgga lapw

init mgga lapw helps you initialize a self-consistent (gKS) MGGA calculation (see section 4.5.17).
For some (popular) functionals an automatic setup is possible (e.g. SCAN). Otherwise a guided
manual setup is offered.

It is also possible to re-use the script after initialization to more easily change to another MGGA
functional.

It may be necessary to run the script twice, with one scf iteration in between, to generate the kinetic
energy density required for an MGGA (if it was not yet present). The script will notify you in this
case.

Help is available with the switch -h.

init mgga lapw -h

PROGRAM: init_mgga_lapw

PURPOSE: initialisation of a self-consistent (gKS) MGGA calculation

USAGE: init_mgga_lapw [OPTIONS] [FLAGS]

FLAGS:
-f FILEHEAD -> FILEHEAD for path of struct & input-files
-h/-H -> help
-keepgmax -> Do not set the suggested GMAX for the chosen MGGA potential,

instead keep the current one.
-taustart -> Generate the $file.tausum(up/dn) files from the atomic kinetic energy densities
-dstart -> Regenerate the electronic density from the atomic densities (for consistency)

(recommended if -taustart is used)

5.2.22 vec2old lapw

vec2old lapw moves case.vector files to case.vector.old. Usually called automatically
just before lapw1 when the iterative diagonalization (run lapw -it) is specified. It also works
for the k-parallel case including local $SCRATCH directories (add -p as first argument, uses hosts
from .processes and spin-polarization (-up/-dn switches).
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For runfsm lapw the sequence had to be changed and the switches -updn or -dnup forces
vec2old to COPY case.vectorup tocase.vectordn (and vice versa). In the runfsm lapw
case the corresponding case.vector*.old files are generated just AFTER lapw2/lapwdm and
not BEFORE lapw1. Thus after runfsm lapw has finished, the corresponding spin-up/dn vectors
are case.vector*.old and NOT case.vector*.

The switches -p -local will copy $SCRATCH/case.vector* to case.vector*. It will be done auto-
matically when you run x lapw2 -p -qtl.

An alternative script vec2pratt lapw was provided by L.D.Marks (l-marks@northwestern.edu)
which together with SRC vecpratt mixes the last two vectors (Pratt mixing) to generate
case.vector.old. It is activatd using the -vec2pratt switch in run lapw.

5.2.23 joinvec lapw

joinvec lapw is a script which together with the program join vectorfiles joins
parallel case.vector *, case.energy *and case.energydum * files into a single
case.vector/case.energy/case.energydum. It will read the information about the
parallel files from .processes (generated by the parallel lapw1 execution.

It is executed using:

x joinvec [ -up/dn -so -hf -enefile]

The switch -enefile directs the program to join only the energy files but not the vector files.
Using -so -or -hf you can join parallel spin-orbit or hybrid-DFT (Hartree-Fock) vector files.

5.2.24 Reduce atomic spheres and interpolate density (reduce rmt lapw)

reduce rmt lapw [ -r XX / -a XX:Rxx,YY:Ryy,... -sp -vxc X]

When a structure optimization (MSR1a and run(sp) lapw or min lapw) fails because of overlap-
ping spheres, this script will reduce the spheres (default: 3 % or use -r XX or -a ..; i.e. same syntax
as used in setrmt lapw) and interpolate the density inside the spheres to the new radial mesh. It
uses internally the program clmaddsub to adapt the interstital charge density. Setting the switch
-sp will do it for clmsum, clmup and clmdn files. We use PBE (13) as default, but with vxc=5, 11,
19 you can set LDA, WC or PBEsol, respectivly.

5.2.25 clmextrapol lapw

clmextrapol lapw extrapolates the charge density (case.clmsum/up/dn) from old to new po-
sitions (or from old to new lattice parameters). It uses internally the program clmaddsub which
takes the density from the old positions (copied into old.clmsum) and subtracts an atomic super-
position density (new super.clmsum) from the old positions and adds an atomic superposition
density fom the new ones (generated by dstart). If new super.clmsum (generated automati-
cally by init lapw) is not present, it will be generated and for the next geometry step an extrap-
olation will take place. However, when you also do a relaxation of internal positions, you should
run x dstart -super after the relaxation and BEFORE new lattice parameters are introduced.

It is usually called from “min lapw ” or “optimize.job” after a geometry step has finished and
a new struct file has been generated.

It can significantly reduce the number of scf-cycles for the new geometry step.

mailto:l-marks@northwestern.edu
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5.2.26 create add atom clmsum lapw

The script create add atom clmsum lapw creates a better starting density for a case,
where you already have a scf-solution for a “similar” case. “Similar” means, that the
new and old case are identical except for ONE atom (adding an adsorbate on a sur-
face). (It uses internally clmaddsub, create add atom clmsum exscript 1 lapw and
create add atom clmsum exscript 2 lapw.

It is usefull in BIG cases, which are difficult to converge from init lapw.

The following steps should be done in the directory with the converged calculation (“surface”,
needs to have clmsum/rsp files):

I mkdir adsorbate
I cd adsorbate
I cp ../surface.struct adsorbate.struct
I edit adsorbate.struct # add an atom at the desired position as last atom
I instgen lapw -ask # optional for AFM cases
I create/copy .machines file # optional for dstart
I init lapw -b [-sp ...]
I create add atom clmsum lapw [-p -sp]

In cases with LDA+U you may further copy the dmatup/dn and vorbup/dn files and start with
runsp lapw -orbc for some iterations.
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5.3 Structure optimization

Structure optimization consists in general of at least 2 steps (the determination of the optimal crys-
tal structure (searching for different phases like NaCl or CsCl, ... will not be discussed here):
optimization of atomic positions (when not fixed by symmetry);
and optimization of the lattice parameters (and angles).

If your structure has free internal position parameters, always optimize them first (see Sect. 5.3.2)
and reoptimize them for every change in lattice parameters (verify that the remaining forces on the
atoms are small).

Optimization of the lattice parameters can be done by the methods discussed below.

5.3.1 Lattice parameters (Volume, c/a, lattice parameters)

Stress

The stress tensor, defined as the derivative of the total energy Etot with respect to strain εij
([Belbase et al., 2021])

σij =
1

Ω

dEtot(ε)

dεij
(5.1)

as well as its trace, the pressure, can in principle be used to find the equillibrium lattice parameter
corresponding to zero stress (or at a certain pressure). So far, we do not provide an utility to
automatically minimize the stress (optimize the lattice parameters), but you have to do it manually.

Unfortunately, the stress tensor as implemented currently has severe restrictions and can be used
ONLY for non-relativistic (NREL) calculations. The accuracy is thus limited to first and second row
elements (maybe early 3d elements) and in particular for the 5d series and above, large errors may
occur due to the neglect of (scalar-) relativistic corrections. It is also necessary to use a XC-potential
from the LIBXC-library, so lapw0 must be compiled using the LIBXC library. Finally, this option
is fairly expensive (see below) and needs a rather large RKMAX (init lapw -prec 2), then one
can expect errors of about 0.1-0.2 GPa and agreement with the total energy minimum within 0.01
bohr.

It can be activated in run lapw using the -str 0.x option. This will change RELA to NREL in
case.struct (and issue a warning), change PBE, PBESOL or WC to the corresponding LIBXC-
options and set the STR label (instead of TOT) in case.in0. Once convergence has been reached, it
will switch also to STR in case.in2 and the rather expensive valence corrections will be calculated
too. Note, that lapw2 may run about 100 times slower than in TOT (FOR) mode and parallelization
is highly recommended.

From the resulting tensor (case.scf) you can then estimate if you should increase or decrease a
certain lattice parameter. Usually, the stress varies quite linear with the cell parameters and only a
few steps should suffice to find the minimum (stress below 0.5 GPa). Because of the long time in
lapw2, we recommend to use run lapw -I -str 0.1, so that the expensive part is calculated
only in the last scf-cycle.

LIMITATIONS: At present spin-polarized calculations are only possible in LDA (The spin-
polarized GGA correction has still a bug). In our experience, the pressure (:PRESS in case.scf) is
fairly robust and reliable. Unfortunately, the individual stress tensor elements (:STRESS GPa00x)
show in some cases a huge RMT dependency and sometimes seem to be quite wrong. Please al-
ways check against total energies, for instance by a variation of c/a vs. energy and compare the
corresponding σ11 and σ33 values.



88 CHAPTER 5. SHELL SCRIPTS

Package optimize

The auxilliary program optimize (x optimize) generates from an existing case.struct (or
case initial.struct, which is generated at the first call of optimize) a series of struct files
with various volumes (or c/a ratios, or other modified parameters) (depending on your input):

[1] VARY VOLUME with CONSTANT RATIO A:B:C
[2] VARY C/A RATIO with CONSTANT VOLUME (tetr and hex lattices)
[3] VARY C/A RATIO with CONSTANT VOLUME and B/A (orthorh lattice)
[4] VARY B/A RATIO with CONSTANT VOLUME and C/A (orthorh lattice)
[5] VARY A and C (2D-case) (tetragonal or hexagonal lattice)
[6] VARY A, B and C (3D-case) (orthorhombic lattice)
[7] VARY A, B, C and Gamma (4D-case) (monoclinic lattice)
[8] VARY C/A RATIO and VOLUME (2D-case) (tetr and hex lattices)

It also produces a shell-script optimize.job which looks similar to:

#!/bin/csh -f
foreach i ( \

tic_vol_-10.0 \
tic_vol__-5.0 \
tic_vol___0.0 \
tic_vol___5.0 \
tic_vol__10.0 \

)
cp $i.struct tic.struct

# cp $i.clmsum tic.clmsum
# x dstart
# run_lapw -ec 0.0001 -in1new 3 -renorm

run_lapw -ec 0.0001
set stat = $status
if ($stat) then

echo "ERROR status in" $i
exit 1

endif
save_lapw ${i}

# save_lapw -f -d XXX $i
end

You may modify this script according to your needs: use runsp lapw or even min lapw, or spec-
ify different convergence parameters; modify the save lapw command and change the save-name
or save into a directory to separate e.g. “gga” and “lda” results. Optionally you may activate the
line “ cp $i.clmsum case.clmsum” to use a previously saved clmsum file, e.g. from a calcula-
tion with smaller RKmax, ... and deactivate the ”clmextrapol lapw” lines, but usually the latter is
so efficient that this is no longer recommended.

Note: You must have a case.clmsum file (either from init lapw or from a previous scf calculation) in
order to run optimize.job.

After execution of this script you should have a series of scf-files with energies corresponding to the
modified parameters, which should allow you to find the corresponding equillibrium parameters.
For the volume optimization an analysis tool is available, other tools are under development).

Using the script grepline (or the “Analysis o Analyze multiple SCF-files” menu of w2web) you
get a summary of the total energy vs. volume (c/a). The file case.analysis can be used in
eplot lapw or gibbs lapw to find the minimum total energy and the equilibrium volume (or
c/a or b/a). Supported equation of states include the EOS2, Murnaghan and Birch-Murnaghan
EOS.

grepline :ENE ’*.scf’ 1 > case.analysis
grepline :VOL ’*.scf’ 1 >> case.analysis

Alternatively you can also use eplot lapw directly and the case.analysis file is generated
automatically :
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eplot lapw -a vol

or

eplot -a "*" will analyse all scf files ’*vol*.scf’
eplot -a pbe will analyse all scf files ’*vol*pbe.scf’

Using such strategies also higher-dimensional optimizations (e.g. c/a ratio and volume) are possi-
ble in combination with the -d option of save lapw.

For optimization of more degrees of freedom (2-4 lattice parameters), you can use the correspond-
ing option and for analysis of the data the script parabolfit lapw together with the program
eosfit6. It performs a non-linear least squares fit, using a parabolic fit-function in your variables
and get an analytic description of your energy surface. Please note, this is only a harmonic fit (no
odd or higher terms) and the description may not be very good if your parameter range is large
and/or the function is quite anharmonic, or you suffer from numerical noise.

For the determination of elastic constants see the description of ELAST in sec 8.6 and IRelast in sec
8.9.

Package optimize abc lapw

The script optimize abc lapw allows for a quite efficient (minimum computational effort) op-
timization of lattice parameters for hexagonal, tetragonal (2D) and orthorhombic (3D) cases. How-
ever, contrary to other packages in this section, it does not give you the Bulk modulus or how eg.
c/a changes with volume, but only the equillibrium lattice parameters. You can get information
about its parameters using the -h switch:

optimize_abc [-h -t 2/3 -sp -p -n X -FC X -d X -ctest X Y Z -ana X
-j "run_lapw -p ..." ]

optimizes a,(b),c lattice parameters
-t 2/3 2D (hexagonal, tetragonal) or 3D (orthorhombic) (default 2D)
-sp spinpolarized case
-p requires the presence of .machines (single jobstep) and

.machines_1...4(9) for 4(9) parallel jobsteps in 2D(3D) case
-n X performs X optimization steps (default 5)
-d X delta-a (in percent) for changes in lat.params. Default 3
-ctest (X Y Z) stops when lat.params are converged to (X Y Z).

Default: (0.02 0.02 0.02 bohr)
-ana X max number of steps for prediction of next step. Default: 3
-FC X convergence criterium in case.inM for -min. Default: 0.5
-j "job" job could be a modification of the default:

"run_lapw -I -fc 1. -p -min" (or "min_lapw ..")

It should be started in a directory with an initialized calculation (init lapw -b ...) and it
performs scf calculations (as defined by -j "run lapw -p -min ...") for the original struc-
ture and 3% changes (either ± 3 or + 3 and + 6%, depending on the resulting energies; can be
changed with -d X) of a, (b) and c (using an auxilliary script xyzchange lapw), followed by a
2D (3D) parabolic fit to find the best a, (b), c. This constitutes step 1. Since these parabolic fits
are rather bad far from the minimum, it will use the newly generated structure and repeat the
procedure 5 times (can be changed by -n X) or until the change of lattice parameters between 2
steps is below 0.02 bohr (can be changed by -ctest X Y Z). All the results are stored as step [1-X]
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files, while intermediate results are in optimize abc save/[1-X]. Debugging output is stored
in optimize abc.out, xchange.out, ... .

At the end it makes automatically a parabolfit (see Sect.5.10.3) using:

parabolfit lapw -t 2/3 -scf ’optimize abc save/[1-9]/*/*scf’

and gives a summary of the energies and lattice parameters of all steps (sometimes the lowest
energy is not the last step) in optimize abc summary.out. When the starting point was very
bad, it is better to repeat the parabolfit lapw step with a different (less) number of steps (use
parabolfit as given above but with a restricted range). If the lattice parameters are not con-
verged you may add one (or more) additional steps by repeating optimize abc -n 1 ...,
which will create step 6, ... and see how the results change.

If you want to start a new optimization (eg. for a different DFT approximation) rename the
optimize abc save directory before starting the new optimization.

Package 2DRoptimize

This program was contributed by:

	
Morteza Jamal
Ghods City-Tehran,Iran
email: m jamal57@yahoo.com
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This package (see also [Reshak and Jamal, 2013, Jamal and Reshak, 2018]) performs a conve-
nient 2D structure optimization (Volume and c/a for tetragonal, rhombohedral or hexagonal
spacegroups). After initialization of a case, one generates a set of structures and a job-file
2Doptimize.job using the command

set2D lapw

This calls setup2D and you have to specify the changes in volume and c/a. The resulting
2Doptimize.job script should be adapted (eg. use min lapw instead of run lapw; insert
switches,...) and executed. Finally

ana2D lapw

can be executed and will analyze the results. It uses a set of case.Vconst* files (produced by
2Doptimize.job and stored also in subdirectory Vconst) and the numbvcoa file. ana2D lapw
checks the sensitivity of the results with the order of fitting (3,4 or 5th order polynomials) and lets
you select the best one. Note: Fits of high order (and few “data points”) may lead to artificial
results due to unphysical oszillations of the fit.

You can see results for
- energy vs. c/a for each volume,
- energy vs. volume (with optimized c/a) and
- c/a vs. volume.

At the end, ana2D lapw calculates a and c lattice constants (and aR, αR for rhombohedral com-
pounds) and checks the sensitivity of them to the order of fit (order of fit=3 or 4 or 5) when it finds
the equation of c/a vs. volume and stores in fitorder.

mailto:m_jamal57@yahoo.com


5.3. STRUCTURE OPTIMIZATION 91

Optionally you can specify more cases by rerunning set2D lapw. Specify also your ‘‘old’’
volume and c/a points again (or leave them out on purpose in case they were very bad
(eg. very far from the minimum). The old results will be taken automatically into account without
recalculation (unless you modify 2Doptimize.job, see the comments at the top of this file). Thus
a “good” strategy is to use only 3x3 points (order of fit = 3) and in a second step you add points
where they are needed.

When you want to rerun such an optimization with different parameters (RKmax, k-mesh, XC-
potentials) modify the top of 2Doptimize.job and set answscf=no and a new savename (eg.
” pbe rk8 1000k”).

5.3.2 Minimization of internal parameters

Most of the more complicated structures have free internal structural parameters, which can either
be taken from experiment or optimized using the calculated forces on the nuclei.

Starting with WIEN2k 11.1 there are two possibilities to determine the equilibrium position of all
individual atoms automatically (obeying the symmetry constraints of a certain space group). One
can use either

I Use the normal scf-scripts run lapw -min where in case.inm the switch MSR1 will be
modified to MSR1a such that the charge density and the positions are simultaneously opti-
mized during the scf-cycle.

I Alternatively, you can use the shell script min lapw, together with the program mini, which
will run a scf-cycle, update the positions using the calculated forces and restarts a new scf
cycle. This continues until forces drop below a certain value. It usually is slower than the
new method.

We recommend the first option, because this scheme is usually more efficient.

A typical sequence of commands for an optimization of the internal positions would look like:

I Generate struct file
I init lapw
I run lapw -fc 1 [another runXX script or additional options are of course also possible]

(this may take some time)
I Inspect the scf file whether you have significant forces (usually at least .gt. 5 mRy/bohr),

otherwise you are more or less at the optimal positions (An experienced user may omit the
run lapw step and proceed directly from init lapw to the next step)

Now you have to decide which method to use:

I The new recommended way is to use a fused loop of the scf cycle and the position optimiza-
tion [Marks and Luke, 2008, Marks, 2013, Marks, 2021]. You start the scf cycle with the -min
switch. save lapw xxx the original calculation and then continue with run lapw -min
-fc 0.5 -ec 0.0001 -cc 0.001 [-it]. This will change case.inm and put MSR1a
(or MSEC1a) as “mixing method”. Then it will run x pairhess (unless case.inM is al-
ready present) and then run (several hundreds) scf-cycles, simultaneously updating positions
and charge densities. Once the forces seem to be smaller than the limit defined in case.inM
it will switch to “mixing method” MSR1 and finalize the scf-cycle with fixed positions. Us-
ing the control files -minstop or .minstart (generated eg. using touch .minstop you
can switch off/on the position optimization while an scf cycle is running. In bad cases, the
final forces may not be as small as desired and possibly you have to restart this step using
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MSR1a again. When having troubles we recommend you read carefully the latest $WIEN-
ROOT/SRC mixer/Docs. Overall the method is very good for semiconductors (or well be-
haved metals), and allows “tricks” like small k-mesh or small RKMax at the beginning of the
minimization and using higher accuracy only towards the end.

I min lapw [options] (this may take some time)

– it will generate a default case.inM (if not present) by:
∗ executing “x pairhess -copy ; cp case.inM st case.inM ” (i.e. it sets up the PORT

minimization option and calculates an approximate starting Hessian).
∗ when -nohess is specified, it will generate case.inM from SRC templates with the

NEW1 option (not recommended).
– Without -NI switch min lapw performs an initialization first:
∗ removes ”histories” (case.broyd*, case.tmpM) if present;
∗ copies .min hess to .minrestart (if present from previous min lapw or x

pairhess).

The following text refers (mainly) to the second method using min lapw:

When case.scf is not present, an scf-cycle will be performed first, otherwise the corresponding
forces are extracted into case.finM and the program mini generates a new case.struct with
modified atomic positions. The previous step is saved under case 1/2/3.... Then a new scf-
cycle is executed and this loop continues until convergence (default: forces below 2mRy/bohr) is
reached.
The last iteration of each geometry step is appended to case.scf mini, so that this file contains
the complete history of the minimization and can be used to monitor the progress (grep :ENE *mini;
or :FORxxx ...).

By default (unless switch -noex is specified), min will call the script clmextrapol lapw after the
first geometry step and try to extrapolate the charge density to the new positions. This procedure
usually significantly reduces the number of scf-cycles and is thus highly recommended.

mini requires an input file case.inM (see Sec. 8.17) which is created automatically and MUST
NOT be changed while min lapw is running (except the force tolerance, which terminates the
optimization).

We recommend the PORT minimization method, a reverse-communication trust-region Quasi-
Newton method from the Port library, which seems to be stable, efficient and does not depend too
much on the users input (DELTAs, see below with NEWT). The PORT option also uses/produces a
file .min hess, which contains the (approximate) Hessian matrix (lower-triangle Cholesky factor)
If you restart a minimization with different k-points, RMT, RKmax, ... or do a similar calcula-
tion (eg. for a different volume, ...) it will be copied to .minrestart (unless -nohess is speci-
fied), so that you start with a reasonable approximation for the Hessian. The program pairhess,
which calculates the first Hessian, also prints out the average Hessian eigenvalue for the symmet-
ric, symmetry-preserving modes in mRyd/au2 as well as the minimum and maximum, and also
the vibration frequencies. A list of these is given at the end of case.pairhess. Note that these
are not all possible modes, but only the symmetry preserving ones. Therefore if you have prior
information about the vibrations of the system you can adjust the rescaling term so the average
vibration frequency is about correct. (see the description of pairhess in 9.18). (In addition there is a
program eigenhess, which will analyze the Hessian after the minimization has been completed.
It also prints vibrational frequencies and may give you hints about dynamical instability of your
system. Some more description is given in $WIENROOT/SRC pairhess/README and at the top
of the output file case.outputeig.

When using PORT you may also want to check its progress using

grep :LABEL case.outputM
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where :LABEL is :ENE (should decrease), :GRAD (should also go down, but could sometimes also
go up for some time as long as the energy still decreases), :MIN (provides a condensed summary
of the progress), :WARN may indicate a problem), :DD (provides information about the step sizes
and mode used). Some general explanations are:
1) The algorithm takes steps along what it considers are good directions (using some internal logic),
provided that these steps are smaller than what is called the trust-region radius. After a good step
(e.g. large energy decrease) it expands the trust-region; after a bad one it reduces it. Sometimes it
will try too large a step then have to reduce it, so the energy does not always go down. You can see
this by using ”:DD” and “:MIN” .
2) A grep on :MIN gives a condensed progress output, in which the most significant terms are
E (energy in some rescaled units), RELDF (last energy reduction), PRELDF (what the algorithm
predicted for the step), RELDX (RMS change in positions in Angstroms) and NPRELDF (predicted
change in next cycle). Near the solution RELDF and RELDX should both become small. However,
sometimes you can have soft modes in your structure in which case RELDX will take a long time
before it becomes small.
3) A warning that the step was reduced due to overlapping spheres if it happens only once (or
twice) is not important; the algorithm tested too large a step. However, if it occurs many times it
may indicate that the RMT’s are too big.
4) A warning ”CURVATURE CONDITION FAILED” indicates that you are still some distance from
the minimum, and the Hessian is changing a lot. If you see many of these, it may be that the forces
and energy are not consistent.

Sometimes PORT gets ”stuck” (often because of inconsistencies of energy and forces due to in-
sufficient scf convergence or a very non-harmonic potential energy surface). A good alternative is
NEW1, which is a ”sophisticated” steepest-descent method with optimized step size. It can be very
efficient in certain cases, but can also be rather slow when the potential energy surface is rather flat
in one, but steep in another direction (eg. a weakly bound molecule on a surface, but constraining
the sensitive parameters, like the bond distance of the molecule, may help).

Another alternative is NEWT, where one must set proper ”DELTAs” and a ”FRICTION” for each
atom. Unfortunately, these DELTAs determine crucially how the minimization performs. Too small
values lead to many (unnecessary) ”geometry steps”, while too large DELTAs can even lead to
divergence (and finally to a crash). Thus you MUST control how the minimization performs. We
recommend the following sequence after 2-3 geometry steps:

grep :ENE *mini
:ENE : ********** TOTAL ENERGY IN Ry = -2994.809124
:ENE : ********** TOTAL ENERGY IN Ry = -2994.813852
:ENE : ********** TOTAL ENERGY IN Ry = -2994.818538

Good, since the total energy is decreasing.

grep :FGL001 *mini
:FGL001: 1.ATOM 0.000 0.000 18.219
:FGL001: 1.ATOM 0.000 0.000 12.375
:FGL001: 1.ATOM 0.000 0.000 7.876

Good, since the force (only a force along z is present here) is decreasing reasonably fast towards
zero. You must check this for every atom in your structure.

When you detect oszillations or too small changes of the forces during geometry optimization, you
will have to decrease/increase the DELTAs in case.inM and rm case.tmpM. (NOTE: You must
not continue with modified DELTAs but keeping case.tmpM.) Alternatively, stop the minimiza-
tion (touch .minstop and wait until the last step has finished), change case.inM and restart.

You can get help on its usage with:
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min -h or min lapw -h

PROGRAM: min

USAGE: min [OPTIONS]

OPTIONS:
-j JOB -> job-file JOB (default: run_lapw -I -fc 1. -i 40 )
-noex -> does not extrapolate the density for next geometry step
-p -> adds -p (parallel) switch to run_lapw
-it -> adds -it (iterative diag.) switch to run_lapw
-it1 -> adds -it1 (it.diag. with recreating H_inv) switch to $job
-it2 -> adds -it2 (it.diag. with reinitialization) switch to $job
-noHinv -> adds -it -noHinv (it.diag. without H_inv) switch to $job
-sp -> uses runsp_lapw instead of run_lapw
-nohess -> removes .minrestart (initial Hessian) from previous minimization
-m -> extract force-input and execute mini (without JOB) and exit
-mo -> like -m but without copying of case.tmpM1 to case.tmpM
-h/-H -> help
-NI -> without initialization of minimization (eg. continue after a crash)
-i NUMBER -> max. NUMBER (50) of structure changes
-s NUMBER -> save_lapw after NUMBER of structure changes

CONTROL FILES:
.minstop stop after next structure change

For instance for a spin-polarized case, which converges more difficultly, you would use:

min -j ‘‘runsp lapw -I -fc 1.0 -i 60’’

5.4 Phonon calculations

Calculations of phonons is based on a program PHONON by K.Parlinski, which must be or-
dered separately (see http://www.computingformaterials.com ). Alternatively we rec-
ommend the package PHONOPY by Atsushi Togo (see http://www.wien2k.at/reg_user/
unsupported/), which is free and has direct WIEN2k support (see examples in our workshop
exercises).

5.4.1 PHONON

You would define the structure of your compound in PHONON together with a supercell of suf-
ficient size (e.g. 64 atoms). PHONON will then generate a list of necessary displacements of the
individual atoms. The resulting file case.d45 must be transfered to UNIX. Here you would run
WIEN2k-scf calculations for all displacements and collect the resulting forces, which will be trans-
fered back to PHONON (case.dat and/or case.dsy). With these force information PHONON
calculates phonon at arbitrary q-vectors together with several thermodynamic properties.

init phonon lapw

init phonon lapw uses case.d45 from PHONON and creates subdirectories case XX and
case XX.struct files for all required displacements. It allows you to define globally RMT values
for the different atoms and
- initializes every case individually (batch option of init lapw is now supported) or
- initializes every second case (useful for pos. and neg. displacements, which have the same sym-
metry and thus only one initialization is necessary), or
- initializes only the first case and copies the files from the first case to all others. This is most
convenient in low symmetry cases with P1 symmetry for all cases and thus just one init lapw needs

http://www.computingformaterials.com
http://www.wien2k.at/reg_user/unsupported/
http://www.wien2k.at/reg_user/unsupported/
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to be executed (while for higher symmetry a separate initialization is required (but computational
effort is reduced).

Please use mainly nn to reduce equivalent atoms. sgroup might change the unitcell and than the
collection of forces into the original supercell is not possible (or quite difficult).

A script run phonon has been created. Modify it according to your needs (parallelization,....) and
run all cases to selfconsistency.

Note that good force convergence is essential (at least 0.1 mRy/bohr) and if your structure has
free parameters, either very good equillibrium positions must have been found before, or even
better, use both, positive and negative displacements to average out any resulting error from non-
equillibrium positions.

analyse phonon lapw

analyse phonon lapw uses the resulting scf files and generates the “Hellmann-Feynman”-file
required by PHONON. When you have positive and negative displacements an automatic averag-
ing will be performed. The resulting case.dat and case.dsy filse should be transfered back to
MS-Windows and imported into PHONON.

5.4.2 PHONOPY

The following example demonstrates how one can calculate the phonons in Si:

cd ˜/WIEN2k; mkdir Si-phonon; cd Si-phonon
makestruct (Si, F cell, a=b=c=5.43 Ang, angles=90;

Si: (.125,.125,.125);(.875,.875,.875); setrmt 3 )
x supercell (init.struct, 1x1x1, P-lattice) # phonopy can handle only P
cp init_super.struct Si-phonon.struct
edit Si-phonon.struct # label all atoms as Si1,2,3,4
init_lapw -prec 2n # medium precision selected
phonopy --wien2k -c Si-phonon.struct -d --dim=2 2 2"
mkdir 1; cp Si-phonon.structS-001 1/1.struct; cd 1
init_lapw -prec 2n
run_lapw -fc 0.02 # optionally use some parallelization
cp 1.scf ..; cd ..
phonopy --wien2k -f 1.scf
create band.conf with editor, containing the following information:

ATOM_NAME = Si
DIM = 2 2 2
PRIMITIVE_AXIS = 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.5
BAND = 0.5 0.5 0.5 0 0 0 0.5 0 0 0.5 0.5 0 0 0 0
BAND_LABELS = L G X K G
BAND_CONNECTION = .TRUE.

phonopy --wien2k -c Si-phonon.struct band.conf p

In band.yaml you can find all phonon frequencies. Please check the PHONOPY manual for more
options.
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5.5 Running programs in parallel mode

This section describes three methods for running WIEN2k on parallel computers. These methods
can also be combined and multiple parallelization strategies are recommended depending on the
hardware and the specific case (size).

The first method uses OpenMP and is thus restricted to a single shared-memory (multicore) cpu.
It is at least for smaller problems (unit cells up to 50 atoms) the first choice to use and should
work even on a single laptop with a multicore cpu. The parallelization depends on a variable
OMP NUM THREADS, which can (should) be set in your .bashrc or .cshrc file. Alternatively, you
can use a omp XXX directive in .machines (see below). Note, that the diagonalization (often the
major cpu-usage) using BLAS/LAPACK (eg. using the mkl or the openblas libraries parallelizes
excellent on 2 cores, very good on 4 cores, but for more than 8 cores you may not get much im-
provement.

The second method, parallelizing k-points over processors, utilizes c-shell scripts, NFS-file system
and passwordless login (public/private keys). This method works with all standard flavors
of Linux without any special requirements. A coarse grained parallelization is very efficient even
on heterogeneous computing environments, e. g. on heterogeneous clusters of workstations, but
also on dedicated parallel computers and does NOT need very large network bandwidth. How-
ever, the method has some startup-delays (seconds) and limitations due to I/O overhead, so use it
only AFTER OpenMP parallelization when you have more computers (nodes) avaialble. If lapw1
takes one hour for 10 k-points on a single node, it will scale nearly perfect up to 10 nodes. However,
if lapw1 takes only 3 seconds, the parallelization on 10 nodes may take 10 seconds instead.

The third parallelization method is based on fine grained methods, MPI, ScaLAPACK, FFTW and
(optionally, but highly recommended) ELPA. It is especially useful for larger systems, if the re-
quired memory size is no longer available on a single computer or when more processors than
k-points are available. It requires a fast network (Infiniband) or a big shared memory machine (at
least 16 cores). Although for small systems (less than 50 atoms/cell) it is not as efficient as the sim-
ple OpenMP + k-point parallelization, the current MPI-version has been enhanced a lot and shows
very good scaling with the number of processors for larger problems and most parts of WIEN2k.
In any case, the number of processors and the size of the problem (number of atoms, matrixsize
due to the plane wave basis) must be compatible and typically NMAT√

processors ≥ 1500 should hold.

The k-point parallelization can use a dynamic load balancing scheme and is therefore also usable on
heterogeneous computing environments like networks of workstations or PCs, even if interactive
users contribute to the processors’ work load.

If your case is large enough, but you still have to use a few k-points, a combination of all paral-
lelization methods is possible (always use OpenMP and k-point parallelism first if you have more
than 1 k-point).

5.5.1 k-Point Parallelization

Parts of the code are executed in k-parallel, namely lapw1, lapwso, hf, lapw2, lapwdm
and optic, qtl, irrep, nmr. These are the numerically intensive parts of most calculations.

Parallelization is achieved on the k-point level by distributing subsets of the k-mesh to different
processors and subsequent summation of the results. The implemented strategy can be used both
on a multiprocessor architecture and on a heterogeneous (even multiplatform) network.

To make use of the k-point parallelization, make sure that your system meets the following require-
ments:



5.5. PARALLEL EXECUTION 97

NFS: All files for the calculation must be accessible under the same name and path. Therefore
you should set up your NFS mounts in a cluster in such a way, that on all machines the path
names are the same.

Remote login: This is not necessary for a single shared memory machine and when you
have specified “shared memory” during site config (setenv USE REMOTE 0 in
$WIENROOT/parallel options).
Otherwise remote login must be possible to all machines without specifying a password.
The command for launching a remote shell can be configured during installation with
siteconfig lapw (see chapter 11). Usually it is ’ssh’. ssh must be possible to all ma-
chines without specifying a password. You must use public/private keys for ssh login.
This can be done by running “ssh-keygen -t rsa” and pasting the id rsa.pub key into
$HOME/.ssh/authorized keys at the remote sites.
In addition, on some Linux versions, ssh will not transfer the “environment”. In this case add
lines like:

SendEnv * # in /etc/ssh/ssh config
AcceptEnv * # in /etc/ssh/sshd config

5.5.2 MPI parallelization

Fine grained MPI parallel versions are available for the programs dstart, lapw0, lapw1,
lapwso, hf, nmr, nlvdw and lapw2. This parallelization method is based on parallelization
libraries, including MPI, ScaLapack, PBlas, ELPA, and FFTW 3 (lapw0). The required libraries are
not included with WIEN2k. On parallel computers, however, they are usually installed. Otherwise,
free versions of these libraries are available1.

The parallelization affects the naming scheme of the executable programs: the fine grained parallel
versions of lapw0/1/2/so, dstart, hf, nmr, and nlvdw are called lapw0 mpi, lapw1[c] mpi,
lapw2[c] mpi, lapwso mpi, dstart mpi, hf[c] mpi, nmr[c] mpi, and nlvdw mpi.
These programs are executed by calls to the local execution environments, as in the sequential
case, by the scripts x, dstartpara, lapw0para, lapw1para, lapwsopara, hfpara,
nlvdwpara and lapw2para. On most computers this is done by calling mpirun and this must
be configured using siteconfig lapw.

5.5.3 How to use WIEN2k as a parallel program

To start the calculation in k- or mpi-parallel, a switch must be set and an input file has to be
prepared by the user. OpenMP parallelization works automatically if the code is compiled with
OpenMP and the variable OMP NUM THREADS is set (or omp XXX lines are present in .machines,
see below).

I The switch -p switches on the k-point and/or mpi parallelization in the scripts x and
run lapw.

I In addition to this switch the file .machines has to be present in the current working direc-
tory. In this file the machine names on which the parallel processes should be launched, and
their respective relative speeds must be specified.

If the .machines file does not exist, or if the -p switch is omitted, the serial versions of the pro-
grams are executed.

Generation of all necessary files, starting of the processes and summation of the results is done
by the appropriate scripts lapw1para, lapwsopara, hfpara, nlvdwpara lapwdmpara and

1http://www.mpich.org/, http://www.netlib.org/scalapack,http://elpa.mpcdf.mpg.de/, http://
www.fftw.org/

http://www.mpich.org/
http://www.netlib.org/scalapack
http://elpa.mpcdf.mpg.de/
http://www.fftw.org/
http://www.fftw.org/
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lapw2para (when using -p), and parallel programs dstart mpi, lapw0 mpi, lapw1 mpi,
lapwso mpi, hf mpi, nlvdw mpi, and lapw2 mpi (when using fine grained parallelization has
been selected in the .machines file).

5.5.4 The .machines file

Besides a global OpenMP parallelization using OMP NUM THREADS, you can tailor the paralleliza-
tion for a specific case using the following .machines file (assuming you have two 8 core shared
memory machines and 4 (or a multiple of 4) k-points):

omp global:8 # use 8 cores as default for all programs
omp lapw1:4 # use 4 cores for lapw1
omp lapw2:4 # use 4 cores for lapw2
1:node1
1:node2
1:node1
1:node2 # use k-parallelization with 4 jobs on 2 nodes

lapw0 would run on 8 cores, but lapw1/2 would use only 4 cores, but 4 jobs would be issued in
parallel, each one with 1/4th of the k-points.

Other possible OpenMP keywords for different programs are listed in
$WIENROOT/SRC templates/.machines.

The following .machines file describes a more complicated example (assuming no OpenMP par-
allelization) combining k-point and mpi parallelization. We assume to have 5 computers, (alpha,
... epsilon), all have 4 cores, but only alpha has enough memory to run your case on a single node
and is twice as fast as the others. Fortunately, beta ... epsilon have a fast network and the smaller
memory nodes can be combined using mpi.

granularity:1
1:alpha
4:beta:4 gamma:4 delta:4 epsilon:4
residue:alpha
balance:
lapw0:beta:4 gamma:4 delta:4 epsilon:4
dstart:beta:4 gamma:4 delta:4 epsilon:4
nlvdw:beta:4 gamma:4 delta:4 epsilon:4

To each set of processors, defined by a single line starting with a “weight:” in this file, a certain
number of k-points is assigned, which are computed in parallel. In each line the weight (relative
speed) and computers are specified in the following form:

weight:machine name1:number1 machine name2:number2 ...

where weight is an integer (e.g. a three times more powerful machine should have a three times
higher weight). Because nowadays one works mostly on homogeneous clusters, the weight (speed)
of a machine is ONLY honored when the keyword balance: is also given. The name of the com-
puter is machine name[1/2/...], and the number of processors to be used on these computers
are number[1/2/...]. If there is only one processor on a given computer, the :1 may be omitted.
Empty lines are skipped, comment lines start with #.

Assuming there are 10 k-points to be distributed in the above example, they are distributed as
follows. The computer alpha gets 2 k-points. The other 8 k-points will be run in a second job in
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mpi-parallel mode on 16 (slower) cores. You should then check the timing in case.dayfile and
possibly adjust the “speed” (for instance to 3 and 7).

If there were additional k-points, they would be calculated by the first processor (or set of pro-
cessors) becoming available. With higher numbers of k-points, this method ensures dynamic load
balancing. If a processor is busy doing other (e. g., interactive) work, the overall calculation will
not stall, but most of its work will be done by other processors (or sets of processors using MPI).
This is, however, not an implementation for fail safety: if a process does not terminate (e. g., due to
shutdown of a computer) the calculation will never terminate. It is up to the user to handle such
hardware failures by modifying the .machines file and restarting the calculation at the appropri-
ate point.

During the run of lapw1para the file .processes is generated. This file is used by lapw2para
(and some others) to determine which case.vector* to read. In case you need to create a
.processes file for a NEW .machines file and don’t want to run lapw1 (for instance in a PBS-
job with “x lapw1 -p -qtl”) you can issue: x lapw1 -p -d [-up] to create an updated
version of this file.

A “granularity” different from 1 (use eg. 3) allows for some load balancing in heterogeneous envi-
ronments. Suppose you have 10 k-points and 2 nodes, granularity:1 will start 2 jobs with 5 k-points
each. However, if node 1 is heavily overloaded, node 2 will idle for quite some time and time will
be wasted. With a larger granularity we would decompose the load into 4 or 6 parts. Two jobs
would start first, but the next parts go to the node which is free because it has finished earlier. If
you can be sure that load balancing is not an issue (eg. because you use a queuing-system and can
be sure that you will get 100% of the cpus for your jobs) it is recommended to set

granularity:1

for best performance (less file I/O).

On shared memory machines it is advisable to add a “residue machine” to calculate the surplus
(residual) k-points (given by the expression MOD(klist,

∑
j newweightj) and rely on the operating

system’s load balancing scheme. Such a “residue machine” is specified as

residue:machine name:number

in the .machines file.

Alternatively, it is also possible to distribute the remaining k-points one-by-one (and not in one
junk) over all processors. The option

extrafine:1

can be set in the .machines file.

When using “iterative diagonalization” or the $SCRATCH variable (set to a local direc-
tory), the k-point distribution must be “fixed”. This is insured since the WIEN2k 16 version unless
the “balance:” keyword is set. By default it will now distribute all k-points at once. If you have 9
k-points and 2 cores, you get 2 jobs with 5 and 4 k-points, respectively.

The lines

lapw0:gamma:2 delta:2 epsilon:4
dstart:gamma:2 delta:2 epsilon:4
nlvdw:gamma:2 delta:2 epsilon:4
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define the computers used for running lapw0 mpi, dstart mpi, and nlvdw mpi. In this example
the 8 processors of the computers gamma, delta, and epsilon run lapw0 mpi, dstart mpi, and
nlvdw mpi in parallel. The parallel dstart is useful for big cases, where core-leakages occured
and a core-density superposition is done automatically (activated by the file .lcore) during scf.
Please note, parallelization in lapw0 and dstart is done mainly over atoms, thus the number
of useful cores is in general different than for lapw1/2/so/hf. The parallelization in nlvdw
concerns mainly the FFT.

If fine grained parallelization is used, each set of processors defined in the .machines file is con-
verted to a single file .machine[1/2/...], which is used in a call to mpirun (or another parallel
execution environment).

When using a queuing system (like SLURM, PBS, LoadLeveler or SUN-Gridengine) one can only
request the NUMBER of processors, but does not know on which nodes the job will run. Thus a
“static” .machines file is not possible. On can write a simple shell script, which will generate this
file on the fly once the job has been started and the nodes are assigned to this job. Examples can be
found at our web-site http://www.wien2k.at/reg_user/faq.

5.5.5 How the list of k-points is split

In the setup of the k-point parallel version of LAPW1 the list of k-points in case.klist is split
into subsets according to the weights specified in the .machines file:

newweighti =

⌊
weighti ∗ klist

granularity ∗
∑
j weightj

⌋

where newweighti is the number of k-points to be calculated on processor i. newweighti is always
set to a value greater equal one.

A loop over all i processors is repeated until all k-points have been processed.

Speedup in a parallel program is intrinsically dependent on the serial or parallel parts of the code
according to Amdahl’s law:

speedup =
1

(1− P ) + P
N

whereas N is the number of processors and P the percentage of code executed in parallel.

In WIEN2k usually only a small part of time is spent in the programs lapw0, lcore and mixer
which is very small (negligible) in comparison to the times spent in lapw1 and lapw2. The time
for waiting until all parallel lapw1 and lapw2 processes have finished is important too. For a
good performance it is therefore necessary to have a good load balancing by estimating properly
the speed and availability of the machines used. We encourage the use of testpara lapw or “Utils.
o testpara” from w2web to check the k-point distribution over the machines before actually running
the programs in parallel.

While running lapw1 and lapw2 in parallel mode, the scripts testpara1 lapw (see 5.2.14) and
testpara2 lapw (see 5.2.15) can be used to monitor the succession of parallel execution.

5.5.6 Flow chart of the parallel scripts

To see how files are handled by the scripts lapw1para and lapw2para refer to figures 5.1
and 5.2. After the lapw2 calculations are completed the densities and the information from the
case.scf2 x files are summarized by sumpara.

Note: parallel lapw2 and sumpara take two command line arguments, namely the case.def file but
also a number of processor indicator.

http://www.wien2k.at/reg_user/faq
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Figure 5.1: Flow chart of lapw1para

Figure 5.2: Flow chart of lapw2para
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5.5.7 On the fine grained parallelization

The following parallel programs use different parallelization strategies:

dstart mpi is parallelized over the atoms and the K-vectors. This method leads to good scalabil-
ity as long as there are more atoms than processors. For very many processors, however,
the speedup is limited, which is usually not at all critical, since the overall computing time
of dstart mpi is quite small. It uses an extra line “dstart:” in .machines to specify the
parallelization.

lapw0 mpi is parallelized over the number of atoms and with a parallel FFT, which is important
in case you have large FFT grids. This method leads to good scalability as long as there are
more atoms than processors. For very many processors, however, the speedup is limited,
which is usually not at all critical, since the overall computing time of lapw0 mpi is quite
small. It uses an extra line “lapw0:” in .machines to specify the parallelization.

lapw1 mpi uses a two-dimensional processor setup to distribute the Hamilton and overlap ma-
trices. For higher numbers of processors two-dimensional communication patterns (4x4=16,
8x8=64,..) are clearly preferable to one-dimensional communication patterns (never use 47
cores, as it gives a 47x1 pattern).
Let us assume, for example, 64 processors. In a given processing step, one of these processors
has to communicate with the other 63 processors if a one-dimensional setup was chosen. In
the case of a two-dimensional processor setup it is usually sufficient to communicate with
the processors of the same processor row (7) or the same processor column (7), i. e. with 14
processors.
In WIEN2k the processor grid P × Q is chosen such that the shape of the grid is “ as square
as possible”, i.e. the sum of P (the larger grid dimension) and Q (the smaller grid dimension)
is minimal. This is done heuristically during the setup of the parallel calculation. Square
grids (P × P , i.e. 4, 16, ... processors), if possible, give best performance due to ScaLAPACK.
However, other grids are also possible (e.g. 4x2=8, 5x4=20, 8x4=32, ...). The default setup
for rectangular grids is P × Q, but for certain cases (depending on problem size, number of
processors, ...) a Q × P grid can perform better – this can be set in the lapw1 input file (see
also Sect. 7.6.3).
OpenMp, k-point and mpi-parallelization can be used at the same time and are specified by
the lines “speed:hostname:number of cores” and the “omp-directives” in .machines.

hf mpi If you use the -hf option for run lapw (“full hybrid” scheme, see Sect. 4.5.9, or the
Slater/SmBJ/KLI potential, see Sect. 4.5.10), then the hf program will be by far the most
time consuming part. For the hybrid functionals, the MPI-parallelization is done over the
number of occupied bands or the matrix elements of the second variational Hamiltonian.
There are two modes of MPI-parallelization (-mode1 or -mode2, see details in Sect. 4.5.9).
Choose first the best k-parallelization (if you have more than one k-point) and then a MPI-
parallelization for the loops over the occupied bands/matrix elements. In the case of the
Slater/SmBJ/KLI potential, this is one of the loop of the double loops over the occupied
bands that is parallelized with MPI. The parallelization follows that of lapw1 as specified in
.machines, although the script uses .processes, which is created at the lapw1 step.

nlvdw mpi consists of a parallelization for the FFT (MPI FFTW), which is important in case of
large FFT grids. This method leads to good scalability in particular for the memory.

lapwso mpi is parallelized over the Hamiltonian. The size is determined by NE*2, where NE is
the number of eigenvalues in lapw1 (determined by EMAX in case.in1). Since this size is
usually much smaller than the Hamiltonian of lapw1, try to use quadratic processor grids
(4x4=16, 8x8=64). Memory size is larger than for the sequential code, but scales with

√
N/4.

The parallelization follows that of lapw1 as specified in .machines, although the script uses
.processes, which has been created in the lapw1 step.

lapw2 mpi is parallelized in two main parts: (i) The density inside the spheres is parallelized over
atoms, and (ii) the fast Fourier transforms are done in parallel.
In addition the density calculation for each atom can be further parallelized by distributing
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the eigenvector on a certain subset of processors (usually 2-8). This is in principle not so ef-
ficient, but must be used if the memory requirement is too big (typically when lapw2 mpi
crashes “without” reasons) or the network is slow and using more cpu-time but less net-
work traffic is more efficient. Test it out for your hardware and specific case). You set it in
.machines using

lapw2 vector split:2

Otherwise, the parallelization follows that of lapw1 as specified in .machines, although
the script uses .processes, which is created at the lapw1 step.

nmr mpi in mode “current” supports the same parallelization strategy (mixed k-point and mpi-
scheme) as lapw1 or lapw2. The keyword

nmr integ: node1 node2 ...

allows for an additional mpi-parallelization (over the atoms) in mode “integ” (see description
in chapter 5.6).

If more than one k-point is distributed at once to lapw1 mpi or lapw2 mpi, they will be treated
consecutively.

Depending on the parallel computer system and the problem size, speedups will vary to some ex-
tend. Matrix setup in lapw1 should scale nearly perfect, while diagonalization (using ScaLAPACK)
will not. Please note: When running the “TiC”-example (Quick start) in mpi-mode on 16 cores, it
will be MUCH slower than on a single core in sequential mode. ALWAYS check the actual speed-up
when increasing the number of cores. Usually, “iterative” scales better than “full” diagonalization
and is preferred for large scale computations (and surfaces). Scalability over atoms will be very
good if processor and atom numbers are compatible. Running the fine grained parallelization over
a 100 Mbit/s or 1 Gbit/s Ethernet network is not recommended, even for large problem sizes.
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5.6 NMR calculations: Chemical shift and Knight shift

5.6.1 Chemical shift

Introduction

The calculation of the magnetic shielding tensor σ in insulators is based on a lin-
ear response theory described in [Laskowski and Blaha, 2012a, Laskowski and Blaha, 2012b,
Laskowski and Blaha, 2014]. In short, the calculation of the NMR shielding tensor requires eigen-
vectors computed at seven different k-meshes: original and shifted by q in +/- x,y,z direction,
where q is small compared to the BZ size. Those eigenvectors are then used to compute the induced
current and magnetic susceptibility. The induced current is afterwards integrated (Biot-Savart) to
get the NMR shielding tensor.

The script x nmr lapw helps you to performs all the necessary steps and together with the NMR-
program (see chapter 8.19) allows you to calculate the chemical shielding (and further the chemical
shift with respect to some reference compound). It requieres a converged scf-calculation of your
case (and for the time being, the system should be insulating, see below for Knight shifts)

The implemented method uses an enriched APW basis set (extended number of local orbitals,
called NMR-LOs). The setup of NMR-LOs is communicated to other programs (for instance lapw1)
via the filecase.in1 nmr file (case.in1c nmr for cases without inversion symmetry). Therefore
after converging SCF or restoring a previously saved calculation, one has to create case.in1 nmr.
The case.in1 nmr file should be generated using:

x nmr lapw -mode in1 [parameters]

The important parameter here is ”-nodes val”, where val is an integer used to determine
the number of NMR-LOs in each orbital quantum number l (see [Laskowski and Blaha, 2012a,
Laskowski and Blaha, 2014] for details). The default value (8) gives well a converged tensor, but
it may also lead to an unnecessarily large basis size. In such cases the number of NMR-LOs may
be reduced using a smaller number ”val” (eg. 5), or by using ”-focus atom” option that decreases
the number of NMR-LOs for atoms other then the one specified. By default the algorithm imple-
mented here adds NMR-LOs to the bases for all orbital numbers up to l+1, where l is the maximal
explicitly specified orbital in case.in1. In a case where the magnetic susceptibility needs to be com-
puted precisely, an l+2 limit may be necessary to reach full convergence. In such cases it is required
to add an extra entrance for the next l-value in case.in1 with a default 0.3 linearization energy (eg.
a l=2 line for an O atom).

You may also consider to run x kgen and create a (finer) k-mesh for the NMR calculation (in any
case, the k-point dependency of the NMR tensor should always be tested explicitly by at least 2
different k-meshes.

After successful generation of a fine k-mesh and the case.in1 nmr file the NMR shielding tensor
can be computed using:

x nmr lapw [parameters]

By default the x nmr script will execute sequentially the following steps (you don’t need to call
them explicitly):

1. shifted k-mesh generation based on the existing k-mesh generated previously

x nmr lapw -mode klist

2. eigenvectors (lapw1)
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x nmr lapw -mode lapw1

In a case where spin-orbit coupling needs to be included (”x nmr -so”) the proper eigen-
vectors vectors are generated with:

x nmr lapw -mode lapwso

Similarly, for hybrid-DFT calculations the eigenvectors will be computed by

x nmr lapw -mode hf

The eigenvectors are computed sequentially in subdirectories:
nmr\_q0 (original k-mesh)
nmr\_pqx (shifted in (+q,0,0) in Cartesian frame)
nmr\_mqx (shifted in (-q,0,0) in Cartesian frame)
nmr\_pqy (shifted in (0,+q,0) in Cartesian frame)
nmr\_mqy (shifted in (0,-q,0) in Cartesian frame)
nmr\_pqz (shifted in (0,0,+q) in Cartesian frame)
nmr\_mqz (shifted in (0,0,-q) in Cartesian frame)

If you are using a SCRATCH variable different from ‘‘./’’, it is recommended to define a
unique scratch directory with

x nmr lapw -scratch /scratch/case A

in order to avoid collisions between multiple NMR calculations running simultaneously.
3. weight files

x nmr lapw -mode lapw2

4. core wave functions

x nmr lapw -mode lcore

5. induced current density and magnetic susceptibility

x nmr lapw -mode current

The current is written to case.current sp (x,y,z), case.current int (x,y,z),
where x,y,z are the Cartesian directions of external magnetic field. The current density is
UNSYMMETRIZED with respect to irreducible BZ. In order to get a symmetrized current
for plotting purposes the full BZ sampling has to be used (x kgen -fbz). The magnetic
susceptibility is written to case.xim.

6. integration of current density

x nmr lapw -mode integ

The full NMR tensor and other related quantities can be found in case.outputnmr integ.
The isotropic chemical shielding σiso and its anisotropy is printed under the label “:NMR-
TOTxxx”(in ppm) and :NMRASYxxx (Haeberlen convention):
:NMRTOT001 ATOM: Te 1 NMR(total/ppm) Sigma-ISO= 1295.27 Sigma xx= 1356.01 Sigma yy= 1356.01 Sigma zz= 1173.79

:NMRASY001 ATOM: Te 1 NMR(total/ppm) ANISO(delta-sigma)= -182.21 ASYM(eta) = 0.000 SPAN= 182.21 SKEW=-1.000

The steps 1) to 6) are executed one after another by x nmr script, there is no need to run through
them manually. However if there is need to recompute the current without changing eigenvectors
(for analysis purposes), steps 5) and 6) can be executed using

x nmr lapw -noinit

Or when one needs to compute only initialization steps 1) to 4)

x nmr lapw -initonly

may be used.
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Options

All options of the x nmr script can be seen using:

x nmr lapw -h

-h/h print this message

-mode modeid runs in specific mode given by modeid. If mode is not defined,
runs sequence needed for actual calculations (klist,lapw1,[lapwso],
lapw2, lcore, current, integ), however preceding execution in mode in1
is still required. modeid can be:

in1 (initialize case.in1_nmr, adds extra LO)
testval (testing case.in1_nmr)
klist (initialize shifted k-lists )
lapw1 (executes lapw1)
lapwso (executes lapwso, only after lapw1 step)
hf (runs hf on top of lapw1, only after lapw1 step)
lapw2 (executes lapw2 for weights, only after lapw1, lapwso or hf)
lcore (executes lcore)
current (generate induced current)
integ (integrates current and computes nmr shielding parameters)
plot (plot of the induced current, uses extra input file

case.innmrplot, generated automatically if not present)

-noinit executes mode current and integ
-initonly executes modes klist, lapw1, [lapwso], lapw2, lcore

-so executes mode lapwso
-orb adds LDA+U to lapw1 or lapwso

-hf executes mode hf between lapw1 and lapw2 (as this takes long time,
you certainly should run this in parallel. If you have more cores,
use -hf -hfdir [nmr_q0, nmr_pqx, nmr_mqx ....] in parallel)

-hfdir subdir prepares HF vectors (starting from lapw1 and ending with lcore)
for the subdir=[q0, pqx, mqx, ....]. It allows more parallelization
as all "subdir"s can be run with a different .machines file in parallel.

-redklist uses a reduced k-list (case.klist_rfbz) for the HF potential
(note, the general HF k-mesh must be the same as in the scf)

-newklist uses the option newklist for the HF potential
-diaghf diagonal approximation to HF (only eigenvalues updated)

-p run in k-point or mpi parallel mode
-quota XXX calculations in junks of XXX k-points (save disk space)

-case name set the casename to name, otherwise the current dir name is used
-up include spin polarisation (up spin)
-dn include spin polarisation (dn spin)
-save dir saves result in directory dir
-scratch scratch_dir sets (and creates if necessary) the scratch directory for

storing vectors

Mode specific parameters (ignored by others):

mode: in1
-nodes val number of nodes of the top radial function, default = 8
-focus val index or name of an atom of interest, if not set then all
-ovlpmax val maximum allowed overlap between top (energy) radial function

from in1 and NMR LO (default 0.6)
mode: testval

-up/dn include spin polarization (up/dn spin)
-orb add LDA+U switch to lapw1

mode: klist
-q val sets the q to value, if not defined uses default of 0.005

mode: lapw1 / lapw2 / lapwso
-p run in k-point or mpi parallel mode
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-up/dn include spin polarization (up/dn spin)
-orb add LDA+U switch to lapw1

mode: hf
-up/dn include spin polarization (up/dn spin)
-hfdir subdir prepares HF vectors (starting from lapw1 up to lcore)

for the subdir=[q0, pqx, mqx, ....]. It allows additional
parallelization as all "subdir"s can be run with a different
.machines file in parallel.

-redklist allows to use a reduced k-list (case.klist_rfbz) for the HF
potential (note, the general HF k-mesh must be the same as
in the scf)

-newklist uses the option newklist for the HF potential
-diaghf diagonal approximation to HF (only eigenvalues updated)

mode: current
-up/dn include spin polarization (up/dn spin)
-so use lapwso vectors
-hf use hf vectors
-emin val overrides the valence bands minimum
-emax val overrides the valence bands maximum
-iemin val sets lowest valence band to val
-iemax val sets highest valence band to val
-filt_cxyz_o iat l filter coupling matrix element(<OS|COUPOP|ES>,make_cxyz)

the occupied states <OS|. Leaves only nonzero alm for iat
and l (|FOP_oc>=SUM_es(|ES><ES|COUPOP|OS>/(ENE_os-ENE_es)

-filt_cxyz_q iat l filter in coupling matrix elements (<OS|COUPOP|ES>,make_cxyz)
the empty states |ES>. Leaves only nonzero alm for iat
and l (|FOP_oc>=SUM_es(|ES><ES|COUPOP|OS>/(ENE_os-ENE_es)

-filt_curr_o iat l filter in current density (make_current_sp,j(r)=<OS|JOP|FOP>)
the occupied states OS. Leaves only nonzero alm for iat and l.

-filt_curr_fop iat l filter in current density (make_current_sp,j(r)=<OS|JOP|FOP>)
the perturbation w-f |FOP>. Leaves only nonzero alm for
iat and l

For all -filt_* if (iat .eq. 0) do only interstitial contribution
For all -filt_* if (l .lt. 0) apply and sum all l channels

-nocc do not add core states to the Green function
-noduc do not add du (radial derivative of u) to the Green function
-scissor val applies scissor shift to conduction bands
-coreonly only core contribution
-xionly calculate only macroscopic magnetic suszeptibility
-noxi do not calculate macroscopic magnetic suszeptibility
-fbz k-sampling uses full BZ (no symmetrization of xi)
-metal should be set in case of metals
-kbT XX sets kbT for Fermi level smearing in metals for Green function

mode: integ
-nocore subtract core contribution
-up/dn include spin polarization (up/dn spin)

mode: plot (note: current is not symmetrized, must use full BZ sampling)
-nocore subtract core contribution
-up/dn include spin polarization (up/dn spin)

Additional notes

Parallelization :

x nmr lapw -p

will execute lapw1, lapw2 and x nmr -mode current -p in k-point parallel mode fol-
lowing the standard WIEN2k scheme. The standard .machines file is used in this case. A
mixed k-point/mpi parallelization (if more then one core is assigned to one k-point) is also
implemented for x nmr -mode current -p. The integration step x nmr -mode integ
-p supports mpi parallelization over atoms. In order to use it, the following line has to be
added to the .machines file:
nmr_integ: $proc_list
where $proc list is a list of processors.
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NMR and hybrid DFT :
It is possible to combine hybrid-DFT and nmr calculations, but note that this is quite expen-
sive, in particular because of additional NMR-local orbital AND the need for ALL eigenval-
ues, which makes the hf step MUCH more expensive than for a normal scf calculation (and
we need calculations for 7 different k-meshes). We therefore recommend a good paralleliza-
tion (if possible, over ALL k-points and in addition with mpi over the (un)occupied bands).
After mode in1 run:

x nmr lapw -p -hf

or, if you have enough cores create several different .machines files and run the 7 directories
in parallel:

cp .machine q0 .machines
x nmr lapw -p -hfdir q0 &
cp .machine pqx .machines
x nmr lapw -p -hfdir pqx &
...

Analyses :

x nmr lapw -p -noinit -emin xx [-emax yy]

allows you to separate the contributions to the magnetic shielding according to the en-
ergy range (in Ry) of the valence bands (eg. the contributions from a “p-band” and a “d-
band”, ...). The switch -noinit runs only the modes current and integ. Additional analysis
is possible with the -filt options, but requires some understanding of the underlying for-
malism (see the NMR papers by [Laskowski and Blaha, 2012a, Laskowski and Blaha, 2012b,
Laskowski and Blaha, 2014, Laskowski and Blaha, 2015a]).

Current plotting :
You can also plot the induced current (it needs the dx Dataexplorer software), but since the
current is not symmetrized, you need to run first with a full k-mesh. Use

x kgen -fbz # for plotting purposes this can be on a smaller k-mesh
x nmr lapw
x nmr lapw -plot # prepares current.dx and current x/y/z.dx files
current2dx lapw

Summary :
If you have many atoms in your cell (eg. in supercells), you can get an automatic summary
of your shifts in case.outputnmr integ using:

nmr orb analyse case 1 2 3 ... # specify as many atoms as you need

It produces summary nmr orb.

5.6.2 Knight shifts

For paramagnetic metals, the Knight shift dominates usually the Chemical shift, which
comes from the Fermi-contact term due to the spin-polarization at EF [Laskowski and Blaha, 2015b,
Laskowski et al., 2017]. The contact term can be calculated in a subdirectory of the non-
spinpolarized calculation (usually called spin) using a spin-polarized setup and a magnetic field
applied self-consistently in lapw0. Execute :

mkdir spin; cp case.struct spin/spin.struct; cd spin
instgen -nm # generate nonmagnetic atomic configurations
init lapw -sp -fermit 0.004 -numk XXX ... # use a very good k-mesh and
fermi-smearing
runsp c lapw -cc 0.00001 [-p] ... # run scf with zero moment
save lapw zero moment
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cp $WIENROOT/SRC templates/case.vorbup 100T spin.vorbup # contains
the 100 T field
cp $WIENROOT/SRC templates/case.vorbdn 100T spin.vorbdn
runsp lapw -orbc -cc 0.000001 [-p] ... # scf calculation with field
grepline :HFF0XX spin.scf # get the hyperfine field for atom XX
save lapw 100T XXX-kpoints fermit-4 # save the calculation

contact term :
The contact term of the shielding can be obtained from the HFF vales in the scf file (in kGauss)
as: σc[ppm] = −HFF ∗ 1000 (for a 100 T field, mind the minus sign).

spin siszeptibility :
You can also get the spin-susceptibility from the total induced magnetic spin moment (:MM-
TOT) using:

χs[cm
3mol−1cell−1] =

M [µB ]

B[T ]
∗ 0.5584939 (5.2)

which could be added to the orbital susceptibility to get the total molar susceptibility.
k-mesh convergence :

Now create a better k-mesh (a rough estimate is to use about 500000 k-points for a one-atomic
unit cell, and this mesh can be reduced by division with the number of atoms/cell) and repeat
the runsp lapw step. Check convergence. Then modify case.in2(c) and choose another
temperature smearing (eg. 2mRy and/or 6 mRy).

dipolar term :
Another contribution, which is usually small, but can sometimes be large (in very
anisotropic cases) is the spin-dipolar contribution [Laskowski et al., 2017]. After a con-
verged scf calculation including the magnetic field (as above), copy case.indm from
$WIENROOT/SRC templates, select the proper atom and l=1-3 and change the last line (r-
index, (l,s)index) to ”3 5”. Then run x lapwdm -up/dn .... From the difference of the
total :XOP0xx values in the case.scfdmup/dn files (in T) you get the spin dipolar contribu-
tion σsd[ppm] by multiplication with -10000 (for a field of 100 T, mind the minus sign).

orbital term for metals :
Of course, also the orbital contribution is non-negligible in metallic compounds and one
should also calculate the chemical shielding (see above). Run x nmr -metal [-p]
[-noxi] [-quota yyy]. Please note: you will usually need an ENOURMOUS k-mesh (more
than 50000 k-points), and also check convergence with respect to the fermi smearing 0.00x parameter.
In case of diskspace problems use -quota yyy, so that the partial vector files contain only yyy k-points.
The -noxi parameter excludes the contributions from both, the spin and orbital part of the
macroscopic susceptibility, because we have found that this quantity is in most cases still
an order of magnitude more difficult to converge, but gives only a small contribution to the
shielding (a few ppm). In principle you could run x nmr -noinit -metal -kbT 0.00x
-xionly and check the corresponding susceptibility in case.xim. If you can reach conver-
gence, you could add its contribution in the final integration using x nmr -mode integ.

summing up all contributions :
To add up all the contributions, you should first use nmr orb analyse to obtain
summary nmr orb (in the parent directory of your spin-polarized calculation). Then use
nmr analyse case 1 2 3 ... to add the orbital + contact + (optional) dipolar terms.
The summary is in summary nmr.
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5.7 Wannier functions (wien2wannier)

This program was contributed by:

	
Wien2Wannier by J.Kunes. P.Wisgott and E.Assmann. Please cite the follow-
ing paper when using it:
J.Kunes, R.Arita, P.Wissgott, A.Toschi, H.Ikeda, K.Held,
Comp.Phys.Commun. 181, 1888 (2010)
http://wien2wannier.github.io/
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

wien2wannier is an interface program between WIEN2k and WANNIER90 (http://www.
wannier.org/) to obtain maximally localized Wannier functions from WIEN2k calculations. It
provides the necessary overlap matrices for the construction of Wannier functions and besides
some auxilliary programs it also contains a package for plotting the resulting Wannier functions
in real space. With this interface, the “whole world of WANNIER90”, i.e. applications which
rely on maximally localized Wannier functions and the resulting hopping parameters (Trans-
port, Berry phases (see Chapter 5.8), DMFT) can be combined with WIEN2k. WANNIER90 must
be installed separately from http://www.wannier.org/ and should be cited when using it
[Mostofi et al., 2008].

5.7.1 Usage

This section contains only a very brief summary of wien2wannier. Please consult
the detailed wien2wannier usersguide.pdf for more details, which is available from
$WIENROOT/SRC w2w or the “textbooks” site at http://www.wien2k.at. For a quick reference,
see also the plain-text file CHEATSHEET in $WIENROOT/SRC w2w.

Preparatory steps

Before running wien2wannier, one needs a converged WIEN2k calculation. Additionally, during
the setup for wien2wannier, the bands which are to be taken into account will have to be speci-
fied, and the main character (e.g., d bands on atom 2) of these bands should be known. To obtain
this information, a combination of partial DOS and bandstructure, or a band character plot is often
necessary (e.g. spaghettis fat bands option, or SpaghettiPrimavera and prima.py, available in
the unsupported software section of the WIEN2k website).

I Converge a Wien2k calculation: run[sp|sp c] OPTIONS
I obtain band structure and partial DOS
I identify target bands and band characters

Then create a subdirectory with the necessary files using:

I prepare w2wdir TARGET

which also gets the Fermi energy from case.scf (or case.scf2, if case.scf is not present
(take care after x lapw2 -qtl -band!)) and change into this new directory TARGET.

http://wien2wannier.github.io/
http://www.wannier.org/
http://www.wannier.org/
http://www.wannier.org/
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Interface and Wannierization

I init w2w [-up|-dn] generates various input files and performs the following steps:

– x kgen -fbz Prepares an unshifted k-mesh in the full BZ. Of course, the mesh-
density influences the quality of localization of the Wannier functions.

– x findbands: looks in case.output1 for bands in a given energy range [Emin;Emax]
(in eV with EF=0), and outputs the corresponding band indices bmin; bmax. To choose
the energy window of interest, consult the (partial) DOS and/or a band structure plot.

– write inwf: prepares the main input file case.inwf for the interface. The band in-
dices bmin; bmax have to be specified, and initial projections Amn may be given in terms
of atomic sites and appropriate spherical harmonics.

– write win writes the input file case.win for wannier90.x on the basis of
case.inwf and other files.

– x wannier90 -pp reads the k-mesh in case.win and writes a list of nearest-neighbor
k-points to case.nnkp.

I x lapw1 OPTIONS: computes the eigenvectors on the full-BZ k-mesh

– you may use .machines and -p, -up/-dn, -orb,
– you may also consider spin-orbit: x lapwso OPTIONS

I x w2w [-up|-dn] [-p] [-so] [-hf]: computes the overlaps Mmn(k, b), initial projec-
tionsAmn(k) and eigenvaluesEn, and writes them to case.mmn, case.amn, and case.eig.

I x wannier90 [-up|-dn] [-so]: computes the Umn(k) by maximum localization. Out-
put is stored in case.wout.

Verification and Postprocessing

After a successful WANNIER90 run, one should check if the centers and spreads of the Wannier
functions (printed in case.wout) are sensible. Another important consistency check is to compare
the Wannier-interpolated bandstructure to the one computed by WIEN2k. wien2wannier also
provides programs to create a real-space plot of the Wannier functions.

I compare band structures:
With the option “hr plot=T” in case.win, WANNIER90 writes a bandstructure derived
from the Wannier-interpolated Hamiltonian H(k) to case band.dat. To compare this to
the bandstructure computed by spaghetti, you can use gnuplot, using the command (in-
cluding a conversion from Bohr to Å)

gnuplot case_band.dat \\
p ’case.spaghetti_ene’ u ($4*1.89):5, ’case_band.dat’ w l

The steps for plotting of Wannier functions are:

I write inwplot: asks for a real-space grid on which the Wannier functions should be plot-
ted, and writes case.inwplot.

I x wplot -wf m [-up|-dn][-p] [-so] evaluates Wannier function number m on the
real-space grid, and writes the density |wm(r)|2 to case m.psink and the phase argwm(r)
to case m.psiarg.

I use positions from case.wout
I wplot2xsf converts all case*.psink and case*.psiarg files in the directory to the cor-

responding xsf files which can be opened by XCrySDen. It can also shift the origin according
to case centres.xyz.

I xcrysden --xsf case m.xsf (or VESTA) visualizes the Wannier functions. Pick
Tools− >Data Grid from the menu and press OK. In the isosurface controls window choose
an appropriate isovalue, e.g. 0.1, and check the Render +/- isovalue box.
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5.7.2 Help and FAQ

Additional information about all programs can be accessed via the help flag, program -h.

And of course, read the detailed wien2wannier userguide.pdf in $WIENROOT/SRC w2w. In
particular there is a FAQ section, which may answer your question.

5.8 Spontaneous Polarization, Piezoelectricity and Born Charges,
Weyl points (BerryPI)

This program was contributed by:

	

S.J. Ahmed, J. Kivinen, B. Zaporzan, L. Curiel, S. Pichardo, O. Rubel
Thunder Bay Regional Research Institute, Ontario, Canada
Computer Physics Communications 184, 647651 (2013)
Sources, tutorials and updates are also available from: https://github.
com/rubel75/BerryPI
email: rubelo@mcmaster.ca
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

These calculations are based on the “Modern Theory of Polarization” (Berry Phase) pioneered by
[King-Smith and Vanderbilt, 1993, Resta et al., 1993], which noticed that (in a solid) we can only
see a change of polarization ∆P in response to an external perturbation, but not the polarization
itself. BerryPI computes both, the ionic and electronic contributions to P using wien2wannier
to obtain the overlap integral between two cell periodic parts of the Bloch functions. Of course,
this theory applies only to insulators (semiconductors), but not for metals. For more details
study the relevant literature (see the CPC paper mentioned above ([Ahmed et al., 2013]), which
should be cited when this module is used in a publication) or the detailed tutorials at $WIEN-
ROOT/SRC BerryPI/BerryPI.

We strongly suggest that you read and repeat the tutorials as described on the wiki page at https:
//github.com/rubel75/BerryPI.

As this method should be applied to insulators only, you have to use the TETRA method for the
BZ integration.

5.8.1 Options

The program is called using

berrypi [ -k NX NY NZ -sp -orb -so --skip-lapw -p -w -b NUM1
NUM2 -sp c] [-h]

An online help of all options can be obtained with the -h switch.

The parameter -k NX NY NZ determines the k-mesh for the BZ sampling (default: 4 4 4).

The additional switches -sp allows spin-polarized calculations; -orb supports additional orbital
potentials (LDA+U or EECE); -so includes spin-orbit coupling (x lapwso); and --skip-lapw
skips the lapw1 run and uses a previous case.vector file. The option -p can be used to make

https://github.com/rubel75/BerryPI
https://github.com/rubel75/BerryPI
mailto:rubelo@mcmaster.ca
https://github.com/rubel75/BerryPI
https://github.com/rubel75/BerryPI
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the most time consuming lapw1 step running in parallel (a .machines file is necessary). The -w
option computes the Berry phase along a specific k-path (a closed loop) given in the case.klist file.
It can only be done in calculations with spin-orbit coupling and should be coupled with -b NUM1
NUM2 to use a specified band range only. It is used to characterize Weyl-points.

5.8.2 Spontaneous Polarization

To obtain ∆P one has to do two calculations, one for the “unperturbed structure (λ0)” and one for
the “perturbed one (λ1)” and obtain ∆P=P1-P0.

Start out with the distorted structure (eg. the ferroelectric phase of BaTiO3) and perform a standard
WIEN2k calculation. Then run the berrypi program:

mkdir case;cd case;mkdir case0;mkdir case1 # create suitable directories
cd case1
makestruct # create your structure
init_lapw -b ... # initialize wien2k
run_lapw ... # run scf cycle
berrypi -k 6 6 6 # run berrypi

where -k defines a suitable k-mesh. This will give you the corresponding x,y,z components of the
polarization in primitive and conventional lattice coordinates, respectively. Note, the polarization
is defined only with respect to a phase factor and thus the computed values are given with both,
π-wrapping from −π to + π and 0 to 2π:

=========================================================================
Value | spin | dir(1) | dir(2) | dir(3)
-------------------------------------------------------------------------
Electronic polarization (C/m2) sp(1) [-9.684673e-12, -2.406503e-13, 4.879618e-01]
Ionic polarization (C/m2) sp(1) [ 1.365657e-11, 1.365657e-11, -1.760570e-01]
Tot.spin polariz.=Pion+Pel(C/m2) sp(1) [ 3.971897e-12, 1.341592e-11, 3.119048e-01]
--------------------------------------------------------------------------
TOTAL POLARIZATION (C/m2) both [ 3.971897e-12, 1.341592e-11, 3.119048e-01]
==========================================================================

Now copy all files to the case0 directory, rename the files and change the struct file such that it
corresponds to the undistorted (cubic) structure (keeping all other inputs identical:

cd ..;cp -r case1 case0;cd case0;rename_files case1 case0
edit case0.struct # create undistorted structure
x dstart # new starting density
run_lapw ... # run scf cycle
berrypi -k 6 6 6 # run berrypi

The spontaneous polarization in z-direction is defined as the difference in z component of polariza-
tion between the non-centrosymmetric Pz(λ1) and centrosymmetric structure Pz(λ0). In this case
Pz(λ0) = 0 (output not shown) and the resultant spontaneous polarization is Ps=0.31 C/m2. Please
consider the effects of possible π wrapping, so in general the smallest possible value should be con-
sidered. If there is a suspect of π-wrapping artifacts, it is useful to study intermediate structures
(between λ1 and λ0) and ensure continuity in the evolution of Pz .

5.8.3 Born effective charges

The Born effective charge Z∗s,αβ of an atom s is defined as the change in polarization due to a
displacement of its position. These charges are also used to estimate the LO/TO splitting of the
optical vibrational modes at Γ.
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For the calculation of the Born effective charge of As in GaAs we create first a “P”-type supercell
with 4 formula units/cell (this is not necessary anymore with versions starting from 2021, since
all lattice types are now supported by BerryPi). One of the 4 As atoms has to be displaced along
the z-axis from it’s equilibrium position by +0.01(λ1) and -0.01(λ2) in fractional coordinates. Then
perform (identical) WIEN2k calculations for the two structures and run berrypi -k 6 6 6. The
two calculations yield lines like:

"lambda1"
ELECTRONIC POLARIZATION
=========================================================================
Value | spin | dir(1) | dir(2) | dir(3)
-------------------------------------------------------------------------
...
Berry phase (rad) [-pi ... +pi] up+dn [ 3.151667e-10, -2.544453e-09, -1.081339e+00]
Electronic polarization (C/m2) sp(1) [ 2.441627e-11, -1.971212e-10, -8.377237e-02]
=========================================================================
IONIC POLARIZATION
=========================================================================
Elem.| Fractional coord. | spin |val| dir(1) | dir(2) | dir(3)
-------------------------------------------------------------------------
Total ionic phase wrap. (rad) sp(1) [ 3.686359e-09, 3.686359e-09, 9.424778e-01]
Ionic polarization (C/m2) sp(1) [ 2.855857e-10, 2.855857e-10, 7.301465e-02]
==========================================================================

"lambda2"
ELECTRONIC POLARIZATION
==========================================================================
Value | spin | dir(1) | dir(2) | dir(3)
--------------------------------------------------------------------------
...
Berry phase (rad) [-pi ... +pi] up+dn [ 7.675118e-10, -2.577606e-09, 1.081339e+00]
Electronic polarization (C/m2) sp(1) [ 5.945987e-11, -1.996896e-10, 8.377237e-02]
==========================================================================
IONIC POLARIZATION
==========================================================================
Elem.| Fractional coord. | spin |val| dir(1) | dir(2) | dir(3)
--------------------------------------------------------------------------
Total ionic phase wrap. (rad) sp(1) [ 3.686359e-09, 3.686359e-09, -9.424778e-01]
Ionic polarization (C/m2) sp(1) [ 2.855857e-10, 2.855857e-10, -7.301465e-02]
==========================================================================

The total (ionic + electronic) phase along z-axis in the case of ”λ1” and ”λ2” is −0.13886 and
0.13886 rad, respectively. The Born charge can be obtained from these phases φ as

Z∗zz =
1

2π

δφz
δρz

(5.3)

where δρ is the relative displacement (0.02) in fractional coordinates. The calculation yields Z∗zz =
−2.18. The negative sign is indicative of a higher electronegativity of As as compared to that for
Ga. Please consider the effects of possible π wrapping, so in general the smallest possible value
should be considered.

5.8.4 Piezoelectric constants

For such calculations you need to calculate the Berry phases for the reference (equillibrium) struc-
ture (e.g. the tetragonal ferroelectric PbTiO3 structure) and a perturbed structure, where a com-
pressive strain εz of 0.1 % has been applied in the z-direction (for the latter structure one should
also perform a new optimization of the internal coordinates).
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The piezoelectric coefficient εzz is defined as change in polarization with respect to the applied
strain:

εzz =
dPz
dεz

(5.4)

5.8.5 Weyl points

The characterization of topological properties and in particular of Weyl points helps to de-
termine important transport properties in modern materials. The method is based on Wil-
son loops (loops in k-space around a Weyl point) and characterizes the chirality of such
points (see [Saini et al., 2022]). For specific examples how to characterize such proper-
ties, see the corresponding tutorials at https://github.com/rubel75/BerryPI/wiki/
Tutorial-5:-Weyl-points-characterization-in-TaAs and https://github.com/
rubel75/BerryPI/wiki/Tutorial-6:-Weyl-point-characterization-in-Te.

5.9 Getting on-line help

I As mentioned before, all WIEN2k csh-shell scripts have a “help”-switch -h, which gives a
brief summary of all options for the respective script.

I To obtain online help on input-parameters, program description, . . . use

help lapw

which opens the pdf-version of the users guide (using acroread or what is defined in $PDF-
READER). You can search for a specific keyword using “∧f keyword”. This procedure substi-
tutes an “Index” and should make it possible to find a specific information without reading
through the complete users guide.

I In addition there is a html-version of the UG and its starting page is:
$WIENROOT/SRC usersguide html/usersguide.html

I When using the user interface w2web, you have access to the html and pdf-version (the latter
requires an X-windows environment) of the usersguide.

I At our webserver http://www.wien2k.at/reg_user we put information for the regis-
tered user:

– A ”FAQ” page with answers to some common problems.
– Update information: When you think the program has an error, please check wether

newer versions are available, which might have fixed the problem you encounter.
– A mailing list:

Please check the ”digest”! In many cases your questions may have been answered be-
fore.

Locate your problem: If a calculation crashes, please locate the problem. Check
the content of files like case.dayfile, *.error, case.scf, case.scfX,
case.outputX where X specifies the program which crashed.

Posting questions: Please provide enough information so that somebody can help you.
A question like: “My calculation crashed. Please help me!” will most likely not be
answered.

https://github.com/rubel75/BerryPI/wiki/Tutorial-5:-Weyl-points-characterization-in-TaAs
https://github.com/rubel75/BerryPI/wiki/Tutorial-5:-Weyl-points-characterization-in-TaAs
https://github.com/rubel75/BerryPI/wiki/Tutorial-6:-Weyl-point-characterization-in-Te
https://github.com/rubel75/BerryPI/wiki/Tutorial-6:-Weyl-point-characterization-in-Te
http://www.wien2k.at/reg_user


116 CHAPTER 5. SHELL SCRIPTS

5.10 Interface scripts

We have included a few “interface scripts” into the current WIEN2k distribution, to simplify the
previewing of results. In order to use these scripts the public domain program “gnuplot” has to be
installed on your system.

5.10.1 eplot lapw

The script eplot lapw plots total energy vs. volume or total energy vs. c/a-ratio or b/a-ratio
using the file case.analysis. The latter should have been created with grepline (using :VOL
and :ENE labels) or the “Analysis o Analyze multiple SCF-files” menu of w2web and the file names
must be generated (or compatible) with “optimize.job”. Alternatively you can use eplot lapw
-a search-string-in-scf-files, which generates case.analysis automatically using
the specified string.

For a description of how to use the script for batch like execution call the script using

eplot lapw -h

5.10.2 gibbs lapw

The script gibbs lapw (provided by M. Jamal) is an extension of eplot lapw and can
also plot Volume vs. Pressure curves as well as the Gibbs energy difference (stored in
case.outputDeltaG) of two different phases as function of Pressure.

When interested in pressure driven phase transitions, one can do calculations for the two phases of
interest in two different subdirectories and perform “Volume optimization” (using x optimize;
optimize.job, see sec. 5.3). Once this has been finished, one can use gibbs lapw (instead of
eplot lapw), which will also create case.outputeos meshp, eos.meshp1 and deos1 files.
These files allow for a comparison of the Gibbs energy as function of pressure for the two different
phases.

A typical sequence to determine the transition pressure of this phase transition (assuming that the
struct files and initializations have been done before) would look like:

cd dir1
x optimize # select Volume optimization and a suitable volume range
optimize.job # optionally change some run or save-options before
gibbs lapw -v vol
cd ../dir2
x optimize # select Volume optimization and a suitable volume range
optimize.job # optionally change some run or save-options before
cp ../dir1/eos.meshp1 eos.meshp2
cp ../dir1/deos1 deos2
gibbs lapw -v vol

For a description of how to use the script for batch like execution call the script using

gibbs lapw -h

which will yield:

gibbs lapw [-v vol] [-a string in scf-files] [-plt/-gbs/-ene]
[-2D]
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For instance, gibbs lapw -a pbe will analyse all scf files ’*pbe.scf’. The energy/volume data
are read from case.analysis, except incase of the -2D swich, where it reads from case.2DEOS.

5.10.3 parabolfit lapw

The script parabolfit lapw is an interface for a harmonic fitting of E vs. 2-4-dim lattice param-
eters by a non-linear least squares fit (eosfit6) using PORT routines. Once you have several scf
calculations at different lattice parameters (usually generated with optimize.job) it generates
the required case.ene and case.latparam from your scf files. Using

parabolfit lapw [ -t 2/3/4 ] [ -f FILEHEAD ] [ -scf ’*xxx*.scf’ ] [-a/b/g]

you can optionally specify the dimensionality of the fit, the specific scf-filenames or which angle
(α/β/γ) should be analysed.

5.10.4 dosplot lapw

The script dosplot lapw plots total or partial Density of States depending on the input used by
case.int and the interactive input. It can be used to generate all partial DOS plots in a simple
way to get an overview. A more advanced plotting interface is provided by dosplot2 lapw, see
below.

For a description of how to use the script for batch like execution call the script using

dosplot lapw -h

5.10.5 dosplot2 lapw

The script dosplot2 lapw plots total or partial Density of States (from case.dosX) or (after run-
ning x pes) the total and partial photoelectron spectra (PES) in case.pesX, or the broadened PES
spectra after pes and broadening (case.pesb, or the renormalized DOS (after pes or rendos
in case.dosrnXev) depending on the input provided by case.int and the interactive input.
It can plot up to 4 DOS/PES curves into one plot, and simultaneously plot spin-up/dn DOS. It
supports also the SUM-DOS option (see description of TETRA.

It was provided by Morteza Jamal (m jamal57@yahoo.com), modified by PB.

For a description of how to use the script for batch like execution call the script using

dosplot2 lapw [-up|-dn -ren -pes -pesb -i -layout -h]

The switch -i ignores the presence of a startup file (dosplot.ini), -layout will allow to specify details
of the plots (color, line type,..), -pes and -pesb plots the (broadened) photoelectron spectra, -ren the
renormalized DOS (both calculated using the pes or the rendos program).

You can also use the script dosplot all lapw [-up] to generate default-plots (4 lines per plot) of
all partial DOS cases as defined in case.int.

mailto:m_jamal57@yahoo.com
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5.10.6 Cgrace lapw, Cgrace conf lapw and Cgrace dos lapw

These three scripts can be used to plot x,y-data using xmgrace. Specifically

I Cgrace lapw generates a “grace-file” IRgrace.agr which can be plotted using xmgrace
IRgrace.agr using an intermediate IRgrace.inf, produced by either Cgrace dos lapw
or Cgrace conf lapw or for DOS-plotting Cgrace lapw -dos [-up/-dn -eV/-Ryd].

I Cgrace dos lapw lets you select which partial-DOS curves you want to plot and generates a
“grace-file” IRgrace.agrwhich can be plotted using xmgrace IRgrace.agr. It supports
also the SUM-DOS option (see description of TETRA). It produces first IRgrace.inf and
with this configuration file Cgrace lapw makes the actual grace-file.

I Cgrace conf lapw can produce (or modify) IRgrace.inf. You can plot any x,y-data file
(with multiple columns and headers) like the files produced by tetra, optics, xspec, ...
For DOS-plotting call it as Cgrace conf lapw -dos [-up/-dn]
You can configure multiple frames, and in each frame define several curves for plotting.

For spinpolarized cases you must call the scripts with -up/-dn options.

For a description of how to use the scripts call the scripts using -h switch.

It was provided by Morteza Jamal (m jamal57@yahoo.com).

5.10.7 Curve lapw

The script Curve lapw plots x,y data from a file specified interactively. It asks for additional
interactive input. It can plot up to 4 curves into one plot and is a simple gnuplot interface.

It was provided by Morteza Jamal (m jamal57@yahoo.com).

5.10.8 specplot lapw

specplot lapw provides an interface for plotting X-ray spectra from the output of the xspec or
txspec program.

For a description of how to use the script for batch like execution call the script using

specplot lapw -h

5.10.9 rhoplot lapw

The script rhoplot lapw produces a surface plot of the electron density from the file case.rho
created by lapw5.

Note: To use this script you must have installed the C-program reformat supplied in SRC reformat.

5.10.10 prepare xsf lapw

This program was contributed by:

	
David Koller
Institute for MaterialsChemistry
TU Vienna
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

mailto:m_jamal57@yahoo.com
mailto:m_jamal57@yahoo.com
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The script prepare xsf lapw produces 3D data of the electron density (or the potential) in
XCrysDen-format (case.xsf) for plotting with XCrysDen (Menu → Tools → Data Grid). It is
written in Python and also uses the programs lapw5 and str2xcr.exe (included in the WIEN2k
distribution). It is rather slow and should be replaced by 3ddens, which is orders of magnitude
faster.

It requires an input file case.inxsf:

# This is an inxsf-file

>D9 clmval # unit # 9 in def-file
>D1 clmvaldn # unit # 11 in def File

>IS # Start of end part of in5-file
RHO
ATU VAL NODEBUG # careful VAL/TOT!!!
NONORTHO
>IE # closes what was started with >IS

>C0 0 0 0 # Start-Corner of part of unit cell (compared to lattice vectors of conventional cell)
>CX 0.5 0.1 0 # x-end
>CY 0.1 0.5 0 # y-end
>CZ 0.2 0.2 1 # z-end
# use for fcc:
#>C0 0 0 0
#>CX 0.5 0.5 0
#>CY 0.5 0 0.5
#>CZ 0 0.5 0.5
# entire cell:
#>C0 0 0 0
#>CX 1 0 0
#>CY 0 1 0
#>CZ 0 0 1

>NX 30 # number of data points in x-direction
>NY 30
>NZ 30
>IZ 3 2 3 # additional cells in in5-file

>PS # parallel start
machine1
machine1
machine2
>PE # parallel end
# >PM

# End of inxsf-file

In this file comments are designated by ‘#’. Markers at the beginning of a line consisting of ‘>’
followed by two characters determine the content of this line or of the following lines, depending
on the marker.

Explanation of the markers:

>D9: The suffix of the main data file. It corresponds to unit 9 in the file lapw5.def
>D1: The suffix of a second data file which can be optionally added to or subtracted from the main

data file. It corresponds to unit 11 in the file lapw5.def
>IS: This starts a section which needs to be closed with ‘>IE’. The lines between these two markers

will be used as lines 6-8 in the in5-file.
>IZ: This will be used as line 4 in the in5-file.
>C0: Coordinates of a corner of a three-dimensional box, delimited by parallel planes, in which the

data should be plotted. The units of these numbers are the unit vectors of the conventional
cell (e.g. 0.5 0.5 0 is the centre of the xy-plane which would be the 1d-position in space group
111)

>CX: Coordinates of the x-end corner of the box
>CY: Coordinates of the y-end corner of the box
>CZ: Coordinates of the z-end corner of the box
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>NX: Number of data points in x-direction
>NY: Number of data points in y-direction
>NZ: Number of data points in z-direction
>PS / >PE / >PM: determine the parallelization

This script also contains support for parallel execution. One possibility is to include ‘>PM’. In this
case the file .machines is used to determine which hosts are used. More details can be found in
the section about parallel WIEN2k. If ‘>PM’ is not present (or commented) it is possible to specify
the desired hosts between ‘>PS’ and ‘>PE’. If neither ‘>PM’ nor ‘>PS’ are present, the script will
be executed in non-parallel way which should work well enough in most cases.

5.10.11 opticplot lapw

The script opticplot lapw produces XY plots from the output files of the optics package us-
ing the case.joint, case.epsilon, case.eloss, case.sumrules or case.sigmak. For a
description of how to use the script for batch like execution call the script using

opticplot lapw -h

5.10.12 addjoint-updn lapw

The script addjoint-updn lapw adds the files case.jointup and case.jointdn together
and produces case.joint. It uses internally the program add columns. It should be called for
spin-polarized optics calculations after x joint -up and x joint -dn, because the Kramers-
Kronig transformation to the real part of the dielectric function (ε1) is not a simple additive quan-
tity concerning the spin (see [Ambrosch-Draxl and Sofo, 2006]). The KK transformation should
then be done non-spinpolarized (x kram) resulting in files: case.epsilon, case.eloss,
case.sumrules or case.sigmak.

This script can also be “missused” to add or subtract (add the keyword “sub”) the content of
case.jointup and case.jointdn, when they come from calculations of different band-ranges,
....

5.10.13 create elf lapw

The script create elf lapw generates the file case.rho onedim (1D plot), case.rho (2D plot)
or case.xsf (3D plot) for the plotting of the electron localization function (ELF)

ELF = 1/
(

1 +
((
τ − τW

)
/τTF

)2)
(5.5)

the iso-orbital indicator (used in meta-GGAs) α

α =
(
τ − τW

)
/τTF (5.6)

or

z = τW /τ, (5.7)

with τ, τW = |∇ρ|2/8ρ and τTF = (3/19)(3π2)2/3ρ|5/3 being the true Kohn-Sham, von Weizsäcker
and Thomas-Fermi kinetic energy density.
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create elf lapw executes lapw0 and then lapw5 (for a 1D and 2D plot) or 3ddens (for a 3D
plot) for τ , τTF and τW , individually. Then, create elf lapw executes create rho, which
calculates ELF, α or z and stores it in case.rho onedim/rho/xsf.

The advantage of using create elf lapw instead of directly the keyword VX ELF, VX ALPHA
and VX Z in case.in0 (see Table 7.6) is to have a function that is better converged in the interstitial
region, especially for α (typically, a badly converged Fourier series displays oscillations).

For a description of how to use the script for batch like execution call the script using

create elf lapw -h
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In sections (6.1-6.6) we describe the initial utility programs. These programs are used to set up a
calculation.

6.1 NN (nearest neighbor distances)

This program uses the case.struct file (see 4.3) in which the atomic positions in the unit cell are
specified, calculates the nearest neighbor distances of all atoms, and checks that the corresponding
atomic spheres (radii) are not overlapping. If an overlap occurs, an error message is shown on the
screen. In addition, the next nearest-neighbor distances up to f times the nearest-neighbor distance
(f must be specified interactively) and bond angles for the first coordination sphere are written to
case.outputnn. For negative f values only the distances of non-equivalent atoms are printed.
, but equivalent ones are not listed again. Optionally one can specify also a “dlimit” parameter,
which helps nn to find equivalent atoms in case of “inaccurate” structural data.

It is highly recommended in most cases that you change your sphere sizes and do NOT use the
default of 2.0. An increase from 2.0 to 2.1 may already result in drastically reduced computing
time. More recommendations are given in chapter 4.3.

nn also checks if equivalent atoms are specified correctly in case.struct. At the bottom of
case.outputnn the coordination shell-structure is listed and from that a comparison with the
input is made verifying that equivalent atoms really have equivalent environments. If this is not the
case, an ERROR will be printed and a new structure file case.struct nn is generated. You have
to recheck your input and then decide whether you want to accept the new structure file, or reject
it (because the equivalency may just be an artefact due to a special choice of lattice parameters).
It also may be that you have made a simple input error. If you want to force two atoms of the
same kind (e.g. 2 Fe atoms) to be nonequivalent (e.g. because you want to do an antiferromagnetic
calculation), label the atoms as “Fe1” and “Fe2” in case.struct.

Thus this program helps to generate proper struct-files especially in the case of artificial unit
cells, e.g. a supercell simulating an impurity or a surface.

It also prints the “bond-valences” (see also the comments in $WIENROOT/SRC nn/BVA).

123
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6.1.1 Execution

The program nn is executed by invoking the command:

nn nn.def or x nn [-add]

The switch -add calculates BVA also for H- or C-C and N-N bonds.

6.2 SGROUP

This program was contributed by:

	
Bogdan Yanchitsky and Andrei Timoshevskii
Institute of Magnetism, Kiev, Ukraine
email: yan@imag.kiev.ua and tim@ukron.kiev.ua
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

It was published in [Yanchitsky and Timoshevskii, 2001], and is written in C.

This program uses information from case.struct (lattice type, lattice constants, atomic posi-
tions) and determines the spacegroup as well as all pointgroups of non-equivalent sites. It uses the
nuclear charges Z or the ”label” in the 3rd place of the atomic name (Si1, Si2) to distinguish differ-
ent atoms uniquely. It is able to find possible smaller unit cells, shift the origin of the cell and can
even produce a new struct file case.struct sgroup based on your input case.struct with
proper lattice types and equivalency. It is thus most useful in particular for “handmade” structures.

For more information see also the README in SRC sgroup.

6.2.1 Execution

The program sgroup is executed by invoking the command:

sgroup -wi case.struct [-wo case.struct sgroup] case.outputsgen
or x sgroup

6.3 SYMMETRY

This program uses information from case.struct (lattice type, atomic positions). If NSYM was
set to zero it generates the space group symmetry operations and writes them to case.struct st
to complete this file. Otherwise (NSYM > 0) it compares the generated symmetry operations
with the already present ones. If they disagree a warning is given in the output. In addition
the point group of each atomic site is determined and the respective symmetry operations and
LM values of the lattice harmonics representation are printed. The latter information is written
into case.in2 sy, while the local rotation matrix, the positive or negative IATNR values and the
proper ISPLIT parameter are written to case.struct st. (See appendix A and Sec. 4.3).

mailto:yan@imag.kiev.ua
mailto:tim@ukron.kiev.ua
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6.3.1 Execution

The program symmetry is executed by invoking the command:

symmetry symmetry.def or x symmetry

6.4 LSTART (atomic LSDA program)

lstart is a relativistic atomic DFT code originally written by Desclaux [Desclaux, 1969,
Desclaux, 1975] and modified for the present purpose. Internally it uses Hartree atomic units,
but all output has been converted to Rydberg units. lstart generates atomic densities which are
used by dstart to generate a starting density for a scf calculation and all the input files for the
scf run: in0, in1, in2, inc and inm (according to the atomic eigenvalues). In addition it creates
atomic potentials (which are truncated at their corresponding atomic radii and could be used to
run lapw1) and optional atomic valence densities, which can be used in lapw5 for a difference
density plot. The atomic total energies are also printed, but it can only be used for cohesive energy
calculations of light elements. Already for second-row elements the different treatment of relativis-
tic effects in lstart and lapwso yields inconsistent data and you must calculate the atomic total
energy consistently by a supercell approach via a “bandstructure calculation (Put a single atom in
a sufficiently large fcc-type unit cell).

If the program stops with some lines:

NSTOP= .....

in case.outputst, this means, that a proper solution for at least one orbital could not be ob-
tained. In such a case the input must be changed and one should provide different occupation
numbers for these states (e.g. Cu can not be started with 3d104s1, but it works with 3d94s2).

The program produces “WARNINGS” if R0 is too big or core-density leaks out of RMT.

6.4.1 Execution

The program lstart is executed by invoking the command:

lstart lstart.def or x lstart [-sigma -half -tau -hdlo]

The files case.rsp(up|dn) are generated and contain the atomic (spin) densities, which will be
used by DSTART later on.
Using -sigma generates case.inst sigma with modified input to generate case.sigma used
for difference densities (see below).

Using -half takes an alternative input case.inst half, and generates alternative output files
(additional half suffix) for the DFT–half method (see section 4.5.14).

Using -tau activates output of the atomic kinetic energy density (slater form ∇ψ∗ · ∇ψ), which
may be used to start a self-consistent gKS MGGA calculation, or an mBJ calculation, from a super-
position of atomic (kinetic energy) densities.

Using -hdlo directs lstart to create HDLOs for p, d or f states (provided there is no corresponding
semicore) in case.in1.

6.4.2 Dimensioning parameters

The following parameters are defined in file param.inc (static and not allocatable arrays):
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NPT total number of radial mesh points, must be gt.(NRAD+NPT00), where NRAD is
the number of mesh-points up to RMT specfied in case.struct.

NPT00 max. number of radial mesh points beyond RMT
RMAX0 max. distance of radial mesh

6.4.3 Input

When running lstart you will first be asked interactively to specify an XC-functional
switch. Currently XC LDA (LDA, [Perdew and Wang, 1992]) as well as three GGAs, XC PBE
[Perdew et al., 1996], XC WC [Wu and Cohen, 2006] and XC PBESOL [Perdew et al., 2008] are sup-
ported by lstart.

In addition the program asks for an energy cut-off, separating core from valence states. Usually
-6.0 Ry is a good choice, but you should check for each atom how much core charge leaks out of the
sphere (WARNINGS in case.outputs). If this is the case one should lower this energy cut-off
and thus include these low lying states into the valence region. Alternatively you can also select
a “charge localization” criterium (usually between 0.97 and 0.9999). This allows a more localized
state (like a 4f of 5d elements) to be core, while a more delocalized state at lower energy (like the
5p states of 5d elements) to be semi-core.

The rest of the input is described in the sample input below.

Note: Only the data at the beginning of the line are read whereas the comment describes the respective
orbitals. This file can be generated automatically in w2web during “Initialize calc. or using “Sin-
glePrograms o instgen lapw” or with the script instgen lapw. To edit this file by hand choose
“View/Edit o Input Files” and choose case.inst.

------------------ top of file: case.inst -------------------
ZINC
Ne 6 (inert gas, # OF VALENCE ORBITALS not counting spin)
3,-1,1.0 N ( N,KAPPA,OCCUP; = 3S UP, 1 ELECTRON)
3,-1,1.0 N 3S DN
3,-2,2.0 N 3P UP
3,-2,2.0 N 3P DN
3, 1,1.0 N 3P*UP
3, 1,1.0 N 3P*DN
3,-3,3.0 P 3D UP
3,-3,3.0 P 3D DN
3, 2,2.0 P 3D*UP
3, 2,2.0 P 3D*DN
4,-1,1.0 P 4S UP
4,-1,1.0 P 4S DN

**** END OF Input

**** END OF Input
------------------- bottom of file ---------------------------

Interpretive comments follow:

line 1: format(a4,a6)
title, keyword

title
keyword The keyword Watson enables a stabilization of negative ions using a

“Watson”-sphere of radius R-wat with charge Q-wat, which must be
given in the next line when this keyword is specified.
The keyword PRATT enables a scf mixing using standard PRATT
scheme. It might be useful if a certain atomic configuration does not
converge with the standard mixing scheme and requires a (usually
quite small) mixing factor, which must be given in the next line when
this keyword is specified.
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line 2: free format
config

config specifies the core state configuration by an inert gas (He, Ne, Ar, Kr,
Xe, Rn) and the number of (valence) orbitals (without spin). (In the
example given above one could also use Ar 3 and omit the 3s and 3p
states.) The atomic configurations are listed in the appendix and can
also be found online using periodic table, a shell script which dis-
plays SRC/periodic.ps with ghostview)

line 3: format(i1,1x,i2,1x,f5.3,a1)
n, kappa, occup, plot

n the principle quantum number
kappa the relativistic quantum number (see below)
occup occupation number (per spin)
plot P specifies that the density of the respective orbital is written to the file

case.sigma, which can be used for difference density plots in lapw5.
N or an empty field will exempt density of the respective orbital from
being printed to file.

>>>:line 3 is repeated for the other spin and for all orbitals specified above by config.
>>>: the last two lines must be

****
****

optional inserted as line 2 when “Watson” has been specified in line 1: free format
R-wat, Q-wat

R-wat radius of a charged sphere used to stabilize otherwise unstable negative
ions (e.g. 2.5 for O2−)

Q-wat charge of the stabilizing sphere, (e.g. 2 for O2−)

The quantum numbers are defined as follows (see e.g. [Liberman et al., 1965]):

Spin quantum number: s = +1 or s = −1

Orbital quantum number j = l + s/2

Relativistic quantum number κ = −s(j + 1/2)

j = l + s/2 κ max. occupation
l s = −1 s = +1 s = −1 s = +1 s = −1 s = +1

s 0 1/2 -1 2
p 1 1/2 3/2 1 -2 2 4
d 2 3/2 5/2 2 -3 4 6
f 3 5/2 7/2 3 -4 6 8

Table 6.6: Relativistic quantum numbers
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6.5 KGEN (generates k mesh)

This program generates the k-mesh in the irreducible wedge of the Brillouin zone (IBZ) on a special
point grid, which can be used in a modified tetrahedron integration scheme [Blöchl et al., 1994].

kgen needs as interactive input the total number of k-points in the full BZ.
If this number is zero, you are asked to specify the divisions of the reciprocal unit-cell vectors (3
numbers, be careful not to ”break” symmetry and choose them properly according to the inverse
lenght of the reciprocal lattice vectors) to create a mesh yourself.
If this number is -1, you should give a k-point spacing in bohr−1, i.e. specify the distance between
2 neighboring k-points (typically 0.3 to 0.05, depending on desired accuracy and metal/nonmetal
character).

If inversion symmetry is not present, it will be added automatically unless you specified the “-so”
switch and case.ksym is present (for magnetic cases with spin-orbit coupling). The k-mesh is
then created with this additional symmetry. If symmetry permits, it further asks whether or not
the k-mesh should be shifted away from high symmetry directions. The file case.klist is used
in lapw1 and case.kgen is used in tetra and lapw2, if the EF switch is set to TETRA, i.e. the
tetrahedron method for the k-space integration is used. For the format of the case.klist see
page 152.

6.5.1 Execution

The program kgen is executed by invoking the command:

kgen kgen.def or x kgen [-so -fbz -hf]

With the switch -so it does not add inversion symmetry. The switch -fbz generates a k-mesh in
the full Brillouinzone (no symmetry).

6.5.2 Dimensioning parameters

The following parameters are used in main.f, ord1.f (static arrays):

IDKP number of inequivalent k-points (like NKPT in other programs)
NWX internal parameter, must be increased for very large k-meshes
INDEXM internal parameter, must be increased for very large k-meshes

6.6 DSTART (superposition of atomic densities)

This program generates an initial crystalline charge density case.clmsum by a superposition of
atomic densities (case.rsp) generated with lstart. Information about LM values of the lattice
harmonics representation and number of Fourier coefficients of the interstitial charge density are
taken from case.in1 and case.in2. You may also specify a larger LUSE value in case.in0 (de-
fault LUSE=13) for the angular integration. In the case of a spin-polarized calculation it must also
be run for the spin-up charge density case.clmup and spin-down charge density case.clmdn.
The program is also used for superposition of atomic potentials required for DFT–1/2 calculations
(see section 4.5.14).
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6.6.1 Execution

The program dstart is executed by invoking the command:

dstart dstart.def or x dstart [-up|dn -fft -super -lcore -half
-tau -p]

With the switch -fft dstart will terminate after case.in0 std has been created.
The switch -super will produce new super.clmsum instead of case.clmsum, which is neces-
sary for charge extrapolation (clmextrapol lapw).
-lcore produces case.clmsc from the radial core densities case.rsplcore ( core-
superposition, this is activated during scf when a .lcore file is present.
With -half the program runs in atomic superposition mode for DFT–1/2: case.inpd case.pot,
and case.pot half are read and case.r2v half is produced.
It can run automatically on OpenMP parallel mode or using (-p) in mpi-parallel mode for big cases
(typically more than 20 atoms).

With -tau, dstart performs the superposition of the kinetic energy density, which may be used
to start a self-consistent gKS MGGA calculation, or an mBJ calculation, from a superposition of
atomic (kinetic energy) densities. In this case it is necessary to run x lstart -tau first.

You can also select a different density truncation inside spheres, when calculating the PW coeffi-
cients. Create case.indstart and enter a “mode” (0-3) and eventually height-facter (mode=1)
or an exponent (1,2,3 for mode=3).For details check old dstart.F. We did not observe a signifi-
cant reduction of scf-cycles with either of the new methods, although sometimes it can give some
improvement.

6.6.2 Dimensioning parameters

The following parameters are collected in file module.f, but usually need not to be changed:

NPT number of r-mesh points in atomic density (should be the same as in LSTART)
LMAX2 max l in LM expansion
NCOM number of LM terms in density
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In sections 7.1-7.13 we describe the main programs to run an SCF cycle as illustrated in figure 4.1.

7.1 LAPW0 (generates potential)

lapw0 computes the total potential Vtot as the sum of the Coulomb Vc and the exchange-correlation
potential Vxc using the total electron (spin) density as input. It generates the spherical part (l=0)
as case.vsp and the non-spherical part as case.vns. For spin-polarized systems, the spin-
densities case.clmup and case.clmdn lead to two pairs of potential files. These files are called:
case.vspup, case.vnsup and case.vspdn, case.vnsdn.

For gKS MGGA calculations, lapw0 is executed twice. Once to generate the auxiliary local
GGA potential (used for core and radial functions), and once to generate the gKS MGGA poten-
tial (for details see section 4.5.17). In the first case, the input file case.in0 loc vsp is used,
and only the file case.vsp(up/dn) is used as output. In the latter case, the usual input file
case.in0 is used, but there is additional in/output. The required input is both the density
case.clmsum/up/dn and the kinetic energy density case.tau(sum/up/dn). The additional
output are the file case.vspmgga(up/dn) which contains the spherical, multiplicative part of
the gKS potential and the file case.vtau(up/dn) which contains the non-multiplicative part
of the gKS potential. The file case.vns(up/dn) contains the non-spherical, multiplicative part
of the gKS potential. If R2V is set in the input (see below), a file case.r2v2 containing the non-
multiplicative part of the exchange-correlation potential for plotting is written, whereas case.r2v
contains the multiplicative part.
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The Coulomb potential is calculated by the multipolar Fourier expansion introduced by
[Weinert, 1981]. Utilizing the spatial partitioning of the unit cell and the dual representation of the
charge density [equ. 2.10], firstly the multipole moments inside the spheres are calculated (Q-sp).
The Fourier series of the charge density in the interstitial also represent SOME density inside the
spheres, but certainly NOT the correct density there. Nevertheless, the multipole moments of this
artificial plane-wave density inside each sphere are also calculated (Q-pw). By subtracting Q-pw
from Q-sp one obtains pseudo-multipole moments Q. Next a new plane-wave series is generated
which has two properties, namely zero density in the interstitial region and a charge distribution
inside the spheres that reproduces the pseudo-multipole moments Q. This series is added to the
original interstitial Fourier series for the density to form a new series which has two desirable prop-
erties: it simultaneously represents the interstitial charge density AND it has the same multipole
moments inside the spheres as the actual density. Using this Fourier series the interstitial Coulomb
potential follows immediately by dividing the Fourier coefficients by K2 (up to a constant). In case
the pseudo density is not well converged a :WARning is issued and one should probably increase
GMAX or decrease NCON.

Inside the spheres the Coulomb potential is obtained by a straightforward classical Green’s func-
tion method for the solution of the boundary value problem.

The exchange-correlation potential is computed numerically on a grid. Inside the atomic spheres a
Lebedev or Gauss-Legendre integration is used to reproduce the potential using a lattice harmonics
representation. In the interstitial region a 3-dimensional fast Fourier transformation (FFT) is used.

The total potential V is obtained by summation of the Coulomb VC and exchange-correlation po-
tentials Vxc and these potentials can also be printed into separate files (see below).

In order to find the contribution from the plane wave representation to the Hamilton matrix el-
ements we reanalyze the Fourier series in such a way that the new series represents a potential
which is zero inside the spheres but keeps the original value in the interstitial region and this series
is put into case.vns.

The contribution to the total energy which involves integrals of the form ρ ∗V is calculated accord-
ing to the formalism of [Weinert et al., 1982].

The Hellmann-Feynman force contribution to the total force is also calculated [Yu et al., 1991].

Finally, the electric field gradient (EFG) is calculated in case you have an L=2 term in the density
expansion. The EFG tensor is given in both, the “local-rotation-matrix” coordinate system, and
then diagonalized. The resulting eigenvectors of this rotation are given by columns.

For surface calculations the total and electrostatic potential at z=0 and z=0.5 is calculated and can
be used as energy-zero for the determination of the workfunction (workfunction = vzero - EF; test
if your vacuum is large enough; it is assumed that the middle of your vacuum region is either at
z=0 or z=0.5).

7.1.1 Execution

The program lapw0 is executed by invoking the command:

lapw0 lapw0.def or x lapw0 [ -p -eece -grr -nlvdw -half]

7.1.2 Dimensioning parameters

The following parameters are used (they are collected in file param.inc, but usually need not to
be changed:
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NCOM number of lm components in charge density and potential representation; it must
satisfy the following condition: NCOM+3 .gt. {[number of l,m with m = 0] + [2
* number of l,m with m > 0]}

NRAD number of radial mesh points
LMAX2 highest L in the LM expansion of charge and potential
LMAX2X highest L for the gpoint-grid in the xcpot generation (may need large values for

“-eece”)
restrict output for mpi-jobs, limits the number of case.output0xxx files to “restrict output”

7.1.3 Input

The input is very simple. It is generated automatically by init lapw, and needs to be changed
only if a different exchange-correlation potential should be used:

------------------ top of file: case.in0 --------------------
TOT XC_PBE # MULT/COUL/EXCH/POT /TOT ; VXC-SWITCH
NR2V IFFT 13 # R2V EECE/HYBR IFFT LUSE
30 30 108 2.00 1 NCON 9 # IFFT-parameters, enhancement factor, iprint, NCON
0 0.0 (#of FK in E-field expansion, EFELD (Ry)

------------------- bottom of file ---------------------------

or, when a staggered field (section 4.5.4) is turned on:

------------------ top of file: case.in0 --------------------
TOT XC_PBE # MULT/COUL/EXCH/POT /TOT ; VXC-SWITCH
NR2V IFFT 13 # R2V EECE/HYBR IFFT LUSE
30 30 108 2.00 1 NCON 9 # IFFT-parameters, enhancement factor, iprint, NCON
STAGFIELD
2 natom
1 -0.01 iatom, shift for spin up (Ry)
2 0.01 iatom, shift for spin up (Ry)
------------------- bottom of file ---------------------------

Interpretive comments follow:

line 1: free format
switch, indxc, xc1, xc2, xc3

switch
TOT total energy contributions and total potential calculated
STR stress and total energy contributions and total potential calculated
KXC total energy contributions and total potential calculated. In addition

the kinetic energy contribution as well as the XC-energy will be printed
(:EKIN and :EXC in case.scf).

POT total potential is calculated, but not the total energy
MULT multipole moments calculated only
COUL Coulomb potential calculated only
EXCH exchange correlation potential calculated only

NOTE: MULT, COUL, and EXCH are for testing only, whereas POT,
saves some CPU time if total energy is not needed

indxc One keyword (XC NAME), four keywords (EX NAME EC NAME
VX NAME VC NAME) or LIBXC-keyword(s) to specify the XC-
energy/potential. The description for the onsite and full hybrid func-
tionals are in sections 4.5.8 and 4.5.9, respectively.

XC NAME
global keyword to specify the X and C energy and potential. Some
of the most popular options are (for all options see Table 7.3 or in
SRC lapw0/vxclm2.f):
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I XC LDA : parametrization [Perdew and Wang, 1992] of accurate
Monte-Carlo data of the homogeneous electron gas

I XC PBE : GGA PBE [Perdew et al., 1996]
I XC WC : GGA WC [Wu and Cohen, 2006, Tran et al., 2007]
I XC PBESOL : GGA PBEsol [Perdew et al., 2008]
I XC SCAN : probably the best meta-GGA (energy

functional only, uses PBE for the potential) up to
now [Sun et al., 2015b]. In order to generate the re-
quired case.tau* files, you need case.inm tau
(cp $WIENROOT/SRC templates/template.inm tau
case.inm tau and run one scf cycle with XC PBE after cre-
ation of case.inm tau. Only afterwards change indxc to
XC SCAN. Meta-GGA functionals may require a larger IFFT
factor (case.in0) or GMAX (case.in2) than GGA functionals.

I XC MBJ or XC LMBJ: modified Becke-Johnson (mBJ) po-
tential VXC [Tran and Blaha, 2009] or its local version lmBJ
[Rauch et al., 2020]. Uses the (l)mBJ-exchange + LDA-correlation
potential and yields band gaps in very good agreement with
experiment. By default, the xc-energy EXC is from LDA. For
detailed usage about (l)mBJ calculations see Secs. 4.5.11 and
4.5.12.

EX NAME EC NAME VX NAME VC NAME
keywords for EX (Table 7.4), EC (Table 7.5), VX (Table 7.6) and VC (Ta-
ble 7.7)

XC LDA X NAME
XC LDA C NAME
XC LDA XC NAME
XC GGA X NAME
XC GGA C NAME
XC GGA XC NAME
XC MGGA X NAME
XC MGGA C NAME
XC MGGA XC NAME
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Keywords to use functionals from the library of exchange and correla-
tion functionals LIBXC (http://www.tddft.org/programs/libxc). A
few points about the use of LIBXC:

I LIBXC [Marques et al., 2012, Lehtola et al., 2018] is a separate pro-
gram that has to be downloaded and compiled with the same com-
piler as the one used for WIEN2k (see 11.1.1).

I One ( X , C or XC ) or two ( X and C ) LIBXC keywords
can be specified. The full list of possible keywords is in
$WIENROOT/SRC lapw0/xc funcs.h or on the LIBXC website.

I It is possible to combine a functional/potential from LIBXC
with a functional/potential from WIEN2k by also specifying one
or several of the keywords EX NAME, EC NAME, VX NAME,
VC NAME (but not XC NAME) which will overrule the corre-
sponding LIBXC choice (except if NAME=NONE).

I A few LIBXC keywords (XC GGA X LB, XC GGA X LBM,
XC MGGA X BJ06, XC MGGA X TB09, XC MGGA X RPP09)
correspond to only a potential (the corresponding energy is zero).
However (see the point just above), it is possible to specify an en-
ergy functional with EX NAME and EC NAME.

I As for the non-scf meta-GGA energy functionals called with the
WIEN2k keywords (see table 7.3), the default associated potential
is PBE.

I For stress calculations with a GGA, it is mandatory to use LIBXC
(set automatically when using the -str convergence criterium in
run lapw).

I For scf mGGA calculations it is mandatory to use LIBXC (set au-
tomatically with init mgga).

I Note that the possibility offered by LIBXC to specify the value
of parameters in several functionals has not been implemented in
WIEN2k.

Example for PBE with the

I global keyword : XC PBE
I individual keywords : EX PBE EC PBE VX PBE VC PBE
I LIBXC-keywords : XC GGA X PBE XC GGA C PBE

xc1,xc2,xc3 optional input(s) for certain XC options:
Example for MGGA MS2: XC MGGA MS 0.504 0.14601 4.0
XC LDA or XC PBE: to modify the spin scaling (reduction of spin-
polarization) according to ([Ortenzi et al., 2012]). xc1 must be between
0 and 2.

http://www.tddft.org/programs/libxc
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Global keyword EX SWITCH EC SWITCH VX SWITCH VC SWITCH Type Comments
XC LDA EX LDA EC LDA VX LDA VC LDA LDA
XC PBE EX PBE EC PBE VX PBE VC PBE GGA
XC WC EX WC EC PBE VX WC VC PBE GGA
XC PBESOL EX PBESOL EC PBESOL VX PBESOL VC PBESOL GGA
XC B3PW91 EX B3PW91 VX B3PW91 GGA semilocal part of hybrid B3PW91
XC B3LYP EX B3LYP VX B3LYP GGA semilocal part of hybrid B3LYP
XC MBJ EX LDA EC LDA VX MBJ VC LDA MGGA
XC LMBJ EX LDA EC LDA VX LMBJ VC LDA MGGA
XC TPSS EX TPSS EC TPSS VX PBE VC PBE MGGA
XC REVTPSS EX REVTPSS EC REVTPSS VX PBE VC PBE MGGA
XC MGGA MS EX MGGA MS EC MGGA MS VX PBE VC PBE MGGA xc1 (κ), xc2 (c) and xc3 (b) are required
XC MVS EX MVS EC MVS VX PBE VC PBE MGGA
XC MBEEF EX MBEEF EC PBESOL VX PBE VC PBE MGGA
XC SCAN EX SCAN EC SCAN VX PBE VC PBE MGGA
XC SCANL EX SCANL EC SCANL VX PBE VC PBE MGGA
XC RSCAN EX RSCAN EC RSCAN VX PBE VC PBE MGGA
XC R2SCAN EX R2SCAN EC R2SCAN VX PBE VC PBE MGGA
XC TM EX TM EC TM VX PBE VC PBE MGGA

Table 7.3: global XC-switches

Keyword forEX Type Reference Comments
EX NONE no exchange energy
EX LDA LDA [Kohn and Sham, 1965]
EX SLDA LDA [Tran and Blaha, 2011] screened LDA for hybrid (case.in0 grr)
EX B88 GGA [Becke, 1988]
EX PW91 GGA [Perdew et al., 1992]
EX EV93 GGA [Engel and Vosko, 1993]
EX PBE GGA [Perdew et al., 1996]
EX REVPBE GGA [Zhang and Yang, 1998]
EX RPBE GGA [Hammer et al., 1999]
EX HCTH93 GGA [Hamprecht et al., 1998]
EX HCTH120 GGA [Boese et al., 2000]
EX HCTH147 GGA [Boese et al., 2000]
EX HCTH407 GGA [Boese and Handy, 2001]
EX AM05 GGA [Armiento and Mattsson, 2005]
EX WC GGA [Wu and Cohen, 2006]
EX PBE-ALPHA GGA [Madsen, 2007] xc1 (α) is required
EX PBESOL GGA [Perdew et al., 2008]
EX SOGGA GGA [Zhao and Truhlar, 2008]
EX RGE2 GGA [Ruzsinszky et al., 2009]
EX PBEINT GGA [Fabiano et al., 2010]
EX OPTPBE GGA [Klimeš et al., 2010]
EX OPTB88 GGA [Klimeš et al., 2010]
EX OPTB86B GGA [Klimeš et al., 2011]
EX HTBS GGA [Haas et al., 2011]
EX AK13 GGA [Armiento and Kümmel, 2013]
EX CAP GGA [Carmona-Espı́ndola et al., 2015]
EX SG4 GGA [Constantin et al., 2016]
EX MPBE GGA [Haas et al., 2010] xc1 (µ) and xc2 (κ) are required
EX B3PW91 GGA [Becke, 1993] semilocal part of hybrid B3PW91
EX B3LYP GGA [Stephens et al., 1994] semilocal part of hybrid B3LYP
EX SPBE GGA [Tran and Blaha, 2011] screened PBE for hybrid (case.in0 grr)
EX SWC GGA [Tran and Blaha, 2011] screened WC for hybrid (case.in0 grr)
EX SPBESOL GGA [Tran and Blaha, 2011] screened PBEsol for hybrid (case.in0 grr)
EX SB88 GGA [Tran and Blaha, 2011] screened B88 for hybrid (case.in0 grr)
EX SHJSPBE GGA [Henderson et al., 2008] screened PBE for hybrid (case.in0 grr), ω = (2/3)λ
EX SHJSPBESOL GGA [Henderson et al., 2008] screened PBEsol for hybrid (case.in0 grr), ω = (2/3)λ
EX SHJSB88 GGA [Weintraub et al., 2009] screened B88 for hybrid (case.in0 grr), ω = (2/3)λ
EX SHJSB97X GGA [Henderson et al., 2008] screened B97x for hybrid (case.in0 grr), ω = (2/3)λ
EX VSXC MGGA [Van Voorhis and Scuseria, 1998]
EX PKZB MGGA [Perdew et al., 1999]
EX TPSS MGGA [Tao et al., 2003]
EX REVTPSS MGGA [Perdew et al., 2009]
EX MGGA MS MGGA [Sun et al., 2013] xc1 (κ), xc2 (c) and xc3 (b) are required
EX MVS MGGA [Sun et al., 2015a]
EX MBEEF MGGA [Wellendorff et al., 2014]
EX SCAN MGGA [Sun et al., 2015b]
EX SCANL MGGA [Mejia-Rodriguez and Trickey, 2018]
EX RSCAN MGGA [Bartók and Yates, 2019]
EX R2SCAN MGGA [Furness et al., 2020]
EX TM MGGA [Tao and Mo, 2016]
EX GRR [Tran and Blaha, 2009] average of |∇ρ| /ρ for mBJ (case.in0 grr)

Table 7.4: EX-switches
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Keyword forEC Type Reference Comments
EC NONE no correlation energy
EC VWN5 LDA [Vosko et al., 1980]
EC LDA LDA [Perdew and Wang, 1992]
EC LYP GGA [Lee et al., 1988]
EC PW91 GGA [Perdew et al., 1992]
EC PBE GGA [Perdew et al., 1996]
EC HCTH93 GGA [Hamprecht et al., 1998]
EC HCTH120 GGA [Boese et al., 2000]
EC HCTH147 GGA [Boese et al., 2000]
EC HCTH407 GGA [Boese and Handy, 2001]
EC AM05 GGA [Armiento and Mattsson, 2005]
EC PBESOL GGA [Perdew et al., 2008]
EC RGE2 GGA [Ruzsinszky et al., 2009]
EC PBEINT GGA [Fabiano et al., 2010]
EC SG4 GGA [Constantin et al., 2016]
EC MPBE GGA [Haas et al., 2010] xc3 (β) is required
EC ACGGA GGA [Burke et al., 2014, Cancio et al., 2018]
EC VSXC MGGA [Van Voorhis and Scuseria, 1998]
EC PKZB MGGA [Perdew et al., 1999]
EC TPSS MGGA [Tao et al., 2003]
EC REVTPSS MGGA [Perdew et al., 2009]
EC MGGA MS MGGA [Sun et al., 2013]
EC MVS MGGA [Sun et al., 2015a]
EC SCAN MGGA [Sun et al., 2015b]
EC SCANL MGGA [Mejia-Rodriguez and Trickey, 2018]
EC RSCAN MGGA [Bartók and Yates, 2019]
EC R2SCAN MGGA [Furness et al., 2020]
EC TM MGGA [Tao and Mo, 2016]

Table 7.5: EC-switches

line 2: free format (only blanks are allowed as separator)
RPRINT, H-mod, FFTopt, LUSE

RPRINT NR2V no additional output
R2V Exchange-correlation (case.r2v), Coulomb (case.vcoul) and total

potentials (case.vtotal) are written as (r2V ) to a file for plotting
with lapw5/3ddens (and the corresponding switch); use “VAL” for
normalization in case.in5)

H-mod EECE Onsite Hartree-Fock (inside spheres) for selected electrons (see 4.5.8)
HYBR Onsite Hybrid functionals (inside spheres) (see 4.5.8)

FFTopt IFFT optional keyword, which lets you define the IFFTx mesh and an en-
hancement factor in the next line (necessary for runeece lapw)

LUSE optional l-max value for the angular grid used in xcpot1. For standard
LDA/GGA the minimal value is max L value of LM-list in case.in2 + 2;
the default is 13 and for EECE one should use a better, antialiased grid,
thus a large negative LUSE-value is recommended (and set automati-
cally by runeece lapw)

line 3: free format (must be omitted when IFFT is not specified above)
IFFTx, IFFTy, IFFTz, IFFTfactor, iprint, NCON ncon

IFFTx,y,z FFT-mesh parameters in x,y,z directions for the calculation of the
XC-potential in the interstitial region. Usually set automatically in
init lapw (dstart). The ratio of the 3 numbers should be indirect pro-
portional to the lattice parameters. (-1 -1 -1 determines these numbers
automatically and takes only IFFTfactor into account)

IFFTfactor Multiplicative factor to the IFFT grid specified above. It needs to be
enlarged for highly accurate GGA or meta-GGA calculations as well as
for systems with H atoms with small spheres.

iprint optional print switch. iprint=0 will greatly reduce case.output0 (in par-
ticular for lapw0 mpi).

NCON 9 optional keyword (NCON) and value for NCON (convergence param-
eter for pseudo charge density (between 4-18)) can be specified.
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Keyword for VX Type Reference Comments
VX NONE no exchange potential
VX LDA LDA [Kohn and Sham, 1965]
VX SLDA LDA [Tran and Blaha, 2011] screened LDA for hybrid (case.in0 grr)
VX B88 GGA [Becke, 1988]
VX PW91 GGA [Perdew et al., 1992]
VX EV93 GGA [Engel and Vosko, 1993]
VX LB94 GGA [van Leeuwen and Baerends, 1994]
VX PBE GGA [Perdew et al., 1996]
VX REVPBE GGA [Zhang and Yang, 1998]
VX RPBE GGA [Hammer et al., 1999]
VX HCTH93 GGA [Hamprecht et al., 1998]
VX HCTH120 GGA [Boese et al., 2000]
VX HCTH147 GGA [Boese et al., 2000]
VX HCTH407 GGA [Boese and Handy, 2001]
VX AM05 GGA [Armiento and Mattsson, 2005]
VX WC GGA [Wu and Cohen, 2006]
VX PBE-ALPHA GGA [Madsen, 2007]
VX PBESOL GGA [Perdew et al., 2008]
VX SOGGA GGA [Zhao and Truhlar, 2008]
VX RGE2 GGA [Ruzsinszky et al., 2009]
VX PBEINT GGA [Fabiano et al., 2010]
VX OPTPBE GGA [Klimeš et al., 2010]
VX OPTB88 GGA [Klimeš et al., 2010]
VX OPTB86B GGA [Klimeš et al., 2011]
VX HTBS GGA [Haas et al., 2011]
VX AK13 GGA [Armiento and Kümmel, 2013]
VX CAP GGA [Carmona-Espı́ndola et al., 2015]
VX SG4 GGA [Constantin et al., 2016]
VX MPBE GGA [Haas et al., 2010] xc1 (µ) and xc2 (κ) are required
VX B3PW91 GGA [Becke, 1993] semilocal part of hybrid B3PW91
VX B3LYP GGA [Stephens et al., 1994] semilocal part of hybrid B3LYP
VX SPBE GGA [Tran and Blaha, 2011] screened PBE for hybrid (case.in0 grr)
VX SWC GGA [Tran and Blaha, 2011] screened WC for hybrid (case.in0 grr)
VX SPBESOL GGA [Tran and Blaha, 2011] screened PBEsol for hybrid (case.in0 grr)
VX SB88 GGA [Tran and Blaha, 2011] screened B88 for hybrid (case.in0 grr)
VX SHJSPBE GGA [Henderson et al., 2008] screened PBE for hybrid (case.in0 grr), ω = (2/3)λ
VX SHJSPBESOL GGA [Henderson et al., 2008] screened PBEsol for hybrid (case.in0 grr), ω = (2/3)λ
VX SHJSB88 GGA [Weintraub et al., 2009] screened B88 for hybrid (case.in0 grr), ω = (2/3)λ
VX SHJSB97X GGA [Henderson et al., 2008] screened B97x for hybrid (case.in0 grr), ω = (2/3)λ
VX GLLBSC GGA, εi [Kuisma et al., 2010]
VX BR89 MGGA [Becke and Roussel, 1989]
VX MBJ MGGA [Tran and Blaha, 2009]
VX LMBJ MGGA [Rauch et al., 2020]
VX GBJ MGGA [Tran et al., 2015a] xc1 (γ), xc2 (p) and xc3 (0=no UC, 1=UC) are required. c is in case.in0abp
VX SMBJ MGGA/nonlocal [Becke and Johnson, 2006]
VX SLATER nonlocal [Slater, 1951]
VX KLI nonlocal [Krieger et al., 1990]
VX RS rs,σ = (3/ (8πρσ))

1/3 written in case.r2v for plotting
VX S sσ = |∇ρσ| /

((
3π2

)1/3
(2ρσ)

4/3
)

written in case.r2v for plotting

VX LAPRHO ∇2ρσ written in case.r2v for plotting
VX TAU τσ written in case.r2v for plotting (post-PBE calculation only)
VX TAUTF τTFσ written in case.r2v for plotting
VX TAUW τWσ written in case.r2v for plotting
VX TAU-TAUW τσ − τWσ written in case.r2v for plotting (post-PBE calculation only)
VX Z τWσ /τσ written in case.r2v for plotting (post-PBE calculation only)
VX ALPHA

(
τσ − τWσ

)
/τTFσ written in case.r2v for plotting (post-PBE only)

VX ELF [Becke and Edgecombe, 1990] ELF= 1

1+((τσ−τWσ )/τTFσ )2
written in case.r2v for plotting (post-PBE only)

VX GRR [Tran and Blaha, 2009] average of |∇ρ| /ρ for mBJ (case.in0 grr)
VX LGRR [Rauch et al., 2020] local average of |∇ρ| /ρ for lmBJ (case.in0 grr)

Table 7.6: VX-switches
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Keyword for VC Type Reference Comments
VC NONE no correlation potential
VC LDA LDA [Perdew and Wang, 1992]
VC VWN5 LDA [Vosko et al., 1980]
VC LYP GGA [Lee et al., 1988]
VC PW91 GGA [Perdew et al., 1992]
VC PBE GGA [Perdew et al., 1996]
VC HCTH93 GGA [Hamprecht et al., 1998]
VC HCTH120 GGA [Boese et al., 2000]
VC HCTH147 GGA [Boese et al., 2000]
VC HCTH407 GGA [Boese and Handy, 2001]
VC AM05 GGA [Armiento and Mattsson, 2005]
VC PBESOL GGA [Perdew et al., 2008]
VC RGE2 GGA [Ruzsinszky et al., 2009]
VC PBEINT GGA [Fabiano et al., 2010]
VC SG4 GGA [Constantin et al., 2016]
VC MPBE GGA [Haas et al., 2010] xc3 (β) is required
VC ACGGA GGA [Burke et al., 2014, Cancio et al., 2018]

Table 7.7: VC-switches

The following line is optional and can be omitted. It is used to introduce an electric field
along z via a zig-zag potential (see [Stahn et al., 2001]):

line 4: free format
IFIELD, EFIELD, WFIELD

IFIELD number of Fourier coefficients to model the zig-zag potential, also
known as the ’analytic triangular ramp’ (mode=0, default). Typically
use IFIELD=30 (the maximal value is IFIELD=999, but you should stay
way below that). An EFIELD of 1.0 for a lattice constant c = 20 bohr
gives you a field as shown in Fig. 7.1. Thus you should put the atoms
of your slab centered around z=0.25 (in the linear region of the zig-zag
field) and the kinks should be in the vacuum. Make sure that you do not
have inversion symmetry. Using IFIELD=-999 (with a random value for
EFIELD) lists in case.output0 the other available (experimental) modes
of electric fields. You can select mode n by specifying IFIELD=n*1000
(e.g. IFIELD=4000 gives you mode 4). The mode that is being used, is
printed at the top of case.output0.

EFIELD value (amplitude) of the electric field. The electric field value EFIELD
corresponds to an electric field in Volt/Angstrom, calculated as:
EF[V/Ang] = 2*EFIELD/c * 13.6/0.529177, where c is your c lattice pa-
rameter (EFIELD= 1/2*EF[V/Ang]*c *.529177/13.6).

WFIELD optional value for lambda (see output of IEFIELD=-999).

Figure 7.1: Form of triangular electric field of 1 Ry for c = 20 bohr
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Alternatively, the 4th and following lines can be used for a staggered field (see section 4.5.4)
line 4: fixed format (starts at 1st column)

STAGFIELD (the presence of this keyword turns on a staggered field, making quasi FSM
calculations for antiferromagnets possible)

line 5: free format
natom

natom number of atoms for which a shift is applied

line 6: free format
iatom(i),shift(i)

iatom index of atom in struct file
shift value of the shift (in Ry) added to the spin-up potential (−shift is added

to the spin-down potential)

6th line repeated natom-times
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7.2 DFT-D3 (Calculate the dispersion energy with DFT-D3)

dftd3 calculates the dispersion energy and forces using the DFT-D3 method of
[Grimme et al., 2010, Grimme et al., 2011]. Since this method depends only on the positions
of atoms (no dependence on the electron density) it is very fast and adds very little computer
time. The dftd3 package is not included by default in WIEN2k, but can be downloaded from
the website of the group of S. Grimme https://www.chemiebn.uni-bonn.de/pctc/
mulliken-center/software. When compilation is done, the executable dftd3 has to be
copied in the $WIENROOT directory.

7.2.1 Execution

The program dftd3 is executed by invoking the command:

x dftd3

7.2.2 Input

The options for dftd3 have to be specified in the input file case.indftd3. If no input file is
created by the user, then the script run(sp) lapw will automatically copy the default one (which is
the recommended one) from $WIENROOT/SRC templates/:

---------------- top of file: case.indftd3 -----------
method bj
func default
grad yes
pbc yes
abc yes
cutoff 95
cnthr 40
num no
---------------- bottom of file: --------------------

A short summary of the options is given below and more details can be found in the manual of
dftd3. Note that case.indftd3 is read by the c-shell script x lapw and that all data should be
written in small letters.

I method : choice of the DFT-D method: bj (the recommended one), zero, bjm, zerom or
old (which is the older DFT-D2 method).

I func <functional> : three choices are possible:

– default, which means the functional specified in case.in0. Currently, this works
for the following combinations in case.in0: “EX B88 EC LYP”, “XC PBE” (or
“EX PBE EC PBE”), “EX REVPBE EC PBE”, “EX RPBE EC PBE”, “XC PBESOL” (or
“EX PBESOL EC PBESOL”), “EX B88 EC PBE” and “EX TPSS EC TPSS”.

– one of the functionals listed in the FORTRAN file dftd3.f (e.g., b-lyp or pbe)
– none, which means that the parameters s6, s8, etc. are read from the

file .dftd3par.hostname created by the user in his home directory, or in
.dftd3par.local in his working directory. For instance, to use the meta-GGA SCAN
with DFT-D3, you should put the following parameters ([Brandenburg et al., 2016] into
.dftd3par.local:
1.0 0.538 0.0 5.42 0.0 4

I grad : yes or no for the calculation of the forces on the nuclei (necessary for the minimization
of internal parameters).

https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software
https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software
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I pbc : yes or no for periodic boundary conditions (pbc). It should be no for an isolated atom
or molecule in a big box.

I abc : yes or no for the calculation of the three-body dispersion contribution with DFT-D3.
I cutoff <value> : The cutoff for the dispersion interaction. The default is 95 bohr.
I cnthr <value> : The cutoff for the coordination number CN. The default is 40 bohr.
I num : yes or no for the numerical (instead of analytical) calculation of forces.

7.3 DFT-D4 (Calculate the dispersion energy with DFT-D4)

dftd4 calculates the dispersion energy and forces using the DFT-D4 method of
[Caldeweyher et al., 2017, Caldeweyher et al., 2019, Caldeweyher et al., 2020]. Since this
method depends only on the positions of atoms (no dependence on the electron density)
it is very fast and adds very little computer time. The dftd4 package is not included by
default in WIEN2k, but can be downloaded from the website of the group of S. Grimme
https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software. When
compilation is done, the executable dftd4 has to be copied in the $WIENROOT directory.

7.3.1 Execution

The program dftd4 is executed by invoking the command:

x dftd4

7.3.2 Input

The options for dftd4 have to be specified in the input file case.indftd4. If no input file is
created by the user, then the script run(sp) lapw will automatically copy the default one (which is
the recommended one) from $WIENROOT/SRC templates/:

---------------- top of file: case.indftd4 -----------
func pbe
grad yes
pbc yes
abc atm
param default
mbdscale 1.0
---------------- bottom of file: --------------------

A short summary of the options is given below and more details can be found in the manual of
dftd4. Note that case.indftd4 is read by the c-shell script x lapw and that all data should be
written in small letters.

I func <functional> : one of the functionals listed in the FORTRAN file dfuncpar.f90 (e.g.,
b-lyp or pbe).

I grad : yes or no for the calculation of the forces on the nuclei (necessary for the minimization
of internal parameters).

I pbc : yes or no for periodic boundary conditions (pbc). It should be no for an isolated atom
or molecule in a big box.

I abc : atm (Axilrod-Teller-Muto) or mbd (RPA-like) term for the calculation of the many-body
dispersion contribution.

I param : instead of the default ones, four values for the damping parameters S6, S8, A1 and
A2 can be specified.

I mbdscale : multiplication factor of the (atm or mbd) many-body dispersion energy.

https://www.chemiebn.uni-bonn.de/pctc/mulliken-center/software
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7.4 NL-vdW (Calculate the dispersion energy with nonlocal van
der Waals functionals)

nlvdw calculates the dispersion energy and potential with nonlocal van der Waals (NL-
vdW) functionals [Dion et al., 2004] using the FFT-based method of Román-Pérez and Soler
[Román-Pérez and Soler, 2009]. Details specific to WIEN2k can be found in [Tran et al., 2017]. See
also the description in Sec.4.5.16. Note that nlvdw is also used to calculate the local average of
∇ρ/ρ, which is used by the lmBJ potential (see Sec. 4.5.12 for details).

7.4.1 Execution

The program nlvdw is executed by invoking the command:

x nlvdw [-p -lmbj]

7.4.2 Input

The options for the nlvdw package have to be specified in the input file case.innlvdw. A tem-
plate can be found in $WIENROOT/SRC templates/:

---------------- top of file: case.innlvdw -----------
1 kernel type
-0.8491 parameters of the kernel
25 plane-wave expansion cutoff GMAX
0.3 density cutoff rhoc
T calculation of the potential (T or F)
10 plane-wave expansion cutoff GMAXpot for the potential
3.78 smearing parameter sigma (in bohr)
---------------- bottom of file: --------------------

The options are explained below:

I kernel type : 1 (for the analytical form of [Dion et al., 2004]), 2 (for the analytical
form of [Vydrov and Van Voorhis, 2010, Sabatini et al., 2013]) or 3 (for the analytical form of
[Terentjev et al., 2018]).

I parameters of the kernel : one value (Zab) for kernel type 1 (e.g., −0.8491 from
[Dion et al., 2004] or −1.887 from [Lee et al., 2010]). Two values (b and C) for kernel type 2
(e.g., b = 6.3 and C = 0.0093 for rVV10 [Vydrov and Van Voorhis, 2010, Sabatini et al., 2013]).
Four values (b, C0, C1 and C2) for kernel type 3 (e.g., b = 10, C0 = 0.0093, C1 = 0.5 and
C2 = 300 for PBEsol+rVV10s [Terentjev et al., 2018]).

I plane-wave expansion cutoff GMAX : 25 bohr−1 is a relatively good value.
I density cutoff rhoc : 0.3 bohr−3 is a relatively good value.
I potential : if set to T (true), the potential is calculated.
I plane-wave expansion cutoff GMAXpot for the potential : 10 bohr−1 is a rel-

atively good trade-off between speed and accuracy. Using a smaller value is not recom-
mended. You may check the accuracy by using a higher value (e.g., 12 bohr−1).

I smearing parameter σ : used only for the lmBJ potential (see Sec. 4.5.12). σ determines
the degree of localization for the average of∇ρ/ρ. 3.78 bohr is the default value.



144 CHAPTER 7. SCF CYCLE

7.5 ORB (Calculate orbital dependent potentials)

This program was contributed by:

	
P.Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

orb calculates the orbital dependent potentials, i.e. potentials which are nonzero in the atomic
spheres only and depend on the orbital state numbers l,m. In the present version the potential is
assumed to be independent of the radius vector and needs the density matrix calculated in lapwdm.
Four different potentials are implemented in this package:

I LDA+U. There are three variants of this method, two of them are discussed in
[Novák et al., 2001]

1. LDA+U(SIC) - introduced by [Anisimov et al., 1993], with an approximate correction
for the self-interaction correction. This is probably best suited for strongly correlated
systems. Sometimes it was suggested in literature to use for a full potential method and
GGA (and not just LDA) an “effective” Ueff = U − J ; setting J = 0.. However, later
works showed that J can still be an important contribution to obtain results in agreement
with experiment.

2. LDA+U(AMF) - introduced by [Czyżyk and Sawatzky, 1994] as ’Around the Mean Field’
method. (In [Novák et al., 2001] it is denoted as LDA+U(DFT)). This version is (proba-
bly) more suitable for metallic or less strongly correlated systems.

3. LDA+U(HMF) - in addition the Hubbard model in the mean field approximation, as in-
troduced by [Anisimov et al., 1991] is also implemented. Note, however, that it is to be
used with the LDA (not LSDA) exchange-correlation potential in spin polarized calcu-
lations!

All variants are implemented in the rotationally invariant way [Liechtenstein et al., 1995]. If
LDA+U is used in an unrestricted, general way, it introduces an orbital field in the calcu-
lation (in analogy to the exchange field in spin-polarized calculations, but it interacts with
the orbital, instead of spin momentum). The presence of such an orbital field may lower the
symmetry. In particular the complex version of LAPW1 must be used. Care is needed when
dealing with the LDA+U orbital field. It may be quite large, and without specifying its direc-
tion it may fluctuate, leading to oscillations of scf procedure or/and to false solutions. It is
therefore necessary to use it in combination with the spin-orbit coupling, preferably running
first LSDA+(s-o) and then slowly switching on the LDA+U orbital field. If the LDA+U orbital
polarization is not needed, it is sufficient to run real version of LAPW1, which then automat-
ically puts the orbital field equal to zero. For systems without the center of inversion, when
LAPW1 must be complex, an extra averaging of the LDA+U potential is necessary.

I Orbital polarization. The additional potential has the form [Brooks, 1985,
Eriksson and Johansson, 1989]:

VOP = cOP < Lz > lz (7.1)
where cOP is the orbital polarization parameter, < Lz > is projection of the orbital momen-
tum on the magnetization direction and lz is single electron orbital momentum component z
parallel to ~M .

I Exact exchange and Hybrid methods: see [Tran et al., 2006] and 4.5.8

mailto:novakp@fzu.cz
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I Interaction with the external magnetic field. In this case the additional potential has a simple
form:

VBext = µB ~Bext(~l + 2~s). (7.2)
The interaction with the electronic spin is taken into account by shifting the spin up and spin
down exchange correlation potentials in LAPW0 by the energy +µBBext − µBBext, respec-
tively. The interaction of Bext with spin could be as well calculated using the ’Fixed spin
moment’ method. For an interaction with the orbital momentum it is necessary to specify the
atoms and angular momentum numbers for which this interaction will be considered. Cau-
tion is needed when considering interaction of the orbital momentum with Bext in metallic
or metallic-like systems. For the analysis see the paper by [Hirst, 1997]
PS: Igor Mazin pointed out, that the total energy (:ENE) of a spin-orbit calculation in case of
an interaction with the external field also includes the external term - L * Bext, where L is the
calculated orbital moment. Thus when plotting the total energy as function of external field,
one has to add a + L * Bext term in order to calculate the total magnetic susceptibility from
the slope of this curve.

In all cases the resulting potential for a given atom and orbital number l is a Hermitian, (2l +
1)x(2l + 1) matrix. In general this matrix is complex, but in special cases it may be real.

For more information see also section 4.5.7.

7.5.1 Execution

The program orb is executed by invoking the command:

x orb [ -up/-dn/-ud ] or orb up/dnorb.def

7.5.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

LABC highest l+1 value of orbital dependent potentials
NRAD number of radial mesh points

7.5.3 Input

The required input files (for both, DFT+U or EECE) can be generated most conveniently using the
script init orb lapw(see Sec.5.2.17).

Since this program can handle three different cases, examples and descriptions of case.inorb for
all cases are given below:

Input for all potentials

line 1: free format
nmod,natorb,ipr

nmod defines the type of potential 1...LDA+U, 2...OP, 3...Bext
natorb number of atoms for which orbital potential Vorb is calculated
ipr printing option, the larger ipr, the longer the output

line 2: (A5,f8.2)
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mixmod,amix

mixmod PRATT or BROYD (should not be changed, see MIXER for more infor-
mation)

amix coefficient for the Pratt mixing of Vorb
This option is now only used for testing. The mixing should be set to
PRATT, 1.0

line 3: free format
iatom(i),nlorb(i),(lorb(li,i),li=1,nlorb(i))

iatom index of atom in struct file
nlorb number of orbital moments for which Vorb shall be applied
lorb orbital numbers (repeated nlorb-times)

3rd line repeated natorb-times

Input for LDA+U (nmod=1)

line 4: free format

nsic defines ’double counting correction’
nsic=0 ’AMF method’ (Czyzyk et al. 1994)
nsic=1 ’SIC method’ (Anisimov et al. 1993, Liechtenstein et al. 1995)
nsic=2 ’HMF method’ (Anisimov et al. 1991)

line 5: free format

U(li,i),
J(li,i)

Coulomb and exchange parameters, U and J, for LDA+U in Ry for atom
type i and orbital number li. We recommend to use Ueff only.

5th line repeated natorb-times, for each natorb repeated nlorb-times

Example of the input file for NiO (LDA+U included for two inequivalent Ni atoms that have in-
dexes 1 and 2 in the structure file):

---------------- top of file: case.inorb --------------------
1 2 0 nmod, natorb, ipr
PRATT,1.0 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
1 nsic (LDA+U(SIC) used)
0.52 0.0 U J
0.52 0.0 U J
---------------- bottom of file: --------------------

Input for Orbital Polarization (nmod=2)

line 4: (free format)

nmodop defines mode of ’OP’
1 average Lz taken separately for spin up, spin down
0 average Lz is the sum for spin up and spin down

line 5: (free format)

Ncalc(i)
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1 Orb.pol. parameters are calculated ab-initio
0 Orb.pol. parameters are read from input

this line is repeated natorb-times
line 6: (free format) (only if Ncalc=0, then repeated nlorb-times)

pop(li,i) OP parameter in Ry

line 7: (free format)
xms(1), xms(2), xms(3)

direction of magnetization expressed in terms of lattice vectors

Example of the input file for NiO (total < Lz > used in (1), OP parameters calculated ab-initio, ~M
along [001]):

---------------- top of file: case.inorb --------------------
2 2 0 nmod, natorb, ipr
PRATT, 1.0 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
0 nmodop
1 Ncalc
1 Ncalc
0. 0. 1. direction of M in terms of lattice vectors
---------------- bottom of file --------------------

Input for interaction with Bext (nmod=3)

line 4: (free format)

Bext external field in Tesla

line 5: (free format)
xms(1), xms(2), xms(3)

direction of magnetization expressed in terms of lattice vectors

Example of the input file for NiO, (Bext= 4 T, along [001]):

---------------- top of file: case.inorb --------------------
3 2 0 nmod, natorb, ipr
PRATT, 1.0 mixmod, amix
1 1 2 iatom nlorb, lorb
2 1 2 iatom nlorb, lorb
4. Bext in T
0. 0. 1. direction of Bext in terms of lattice vectors
---------------- bottom of file --------------------
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7.6 LAPW1 (generates eigenvalues and eigenvectors)

lapw1 sets up the Hamiltonian and the overlap matrix ([Koelling and Arbman, 1975]) and finds
by diagonalization eigenvalues and eigenvectors which are written to case.vector. Besides the
standard LAPW basis set, also the APW+lo method (see [Sjöstedt et al., 2000, Madsen et al., 2001])
is supported and the basis sets can be mixed for maximal efficiency. You can also set multiple
LOs (low- or high-energy LOs, eg. for NMR calculations, or for including more (semi-)core states
or for a better description of high-Energy states (typically 2-4 Ry above EF ) for spectroscopies
(XANES, TELNES, optics at high energy)). When adding such LOs, make sure their E-parameters
are far away from each other (typically at least 1 Ry, often 2.4 Ry), otherwise ghostbands may
occur. In addition (or sometimes, alternatively) a second-derivative (HDLO) LO for improved E-
linearization of valence bands (in particular for d and f-states and large RMTs)[Karsai et al., 2017]
can be defined. If the file case.vns exists (i.e. non-spherical terms in the potential), a full-potential
calculation is performed.

For structures without inversion symmetry, where the hamilton and overlap matrix elements are
complex numbers, the corresponding program version lapw1c must be used in connection with
lapw2c (this will be done automatically, when using the x lapw script..

Since usually the diagonalization is the most time consuming part of the calculations, two
options exist here. In WIEN2k we include highly optimized modifications of LAPACK rou-
tines. We call all these routines “full diagonalization”, but we also provide an option to do
an “iterative diagonalization” using a new preconditioning of a block-Davidson method (see
[Singh, 1989, Blaha et al., 2009]). The scheme uses an old eigenvector from the previous scf-
iteration, and produces approximate (but usually still highly accurate) eigenvalues/vectors. The
preconditioner (inverse of (H − λS) can be calculated at the first iterative step (which will there-
fore take longer than subsequent iterative steps), stored on disk (case.storeHinv) and reused in
all subsequent scf-iterations (until the next “full” diagonalization or when it is recreated (x lapw1
-it -noHinv0)). Usually this is the fastest scheme, but storage of case.storeHinv can be large
(and slow when you have a slow network) and when the Hamiltonian changes too much, perfor-
mance may degrade. Alternatively, the preconditioner can be recalculated all the time (x lapw1
-it -noHinv). Depending on the ratio of matrix size to number of eigenvalues (cpu time increases
linearly with the number of eigenvalues, but a sufficiently large number is necessary to ensure
convergence) a significant speedup compared to “full” diagonalization (LAPACK) can be reached.
Iterative diagonalization is activated with the -it switch in x lapw1 -it or run lapw -it.
Often the preconditioner is so efficient, that it does not need to be recalculated, even within a
structural optimization and one can use min lapw -j ‘‘run lapw -I -fc 1 -it’’. In some
cases it is preferable to use min lapw -j ‘‘run lapw -I -fc 1 -it1’’, which will recreate
case.storeHinv, or do not store these files at all using min lapw -j ‘‘run lapw -I -fc 1
-it -noHinv ’’

Parallel execution (fine grain and on the k-point level) is also possible and is described in detail in
Sec. 5.5. A much faster alternative to ScalaPack is using the ELPA library for diagonalization.

The switch -nohns skips the calculation of the nonspherical matrix elements inside the sphere.
This may be used to save computer time during the first scf cycles.

7.6.1 Execution

The program lapw1 is executed by invoking the command:

x lapw1 [-c -up|dn -it -noHinv|-noHinv0 -p -nohns -orb -band
-nmat only -nmr] or

lapw1 lapw1.def or lapw1c lapw1.def
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In cases without inversion symmetry, the default input filename is case.in1c. For 2-window (not
recommended) semi-core calculations the lapw1s.def file uses a case.in1s file and creates the
files case.output1s and case.vectors. For the spin-polarized case lapw1 is called twice with
uplapw1.def and dnlapw1.def. To all relevant files the keywords “up“ or “dn“ are appended
(see the fcc Ni test case in the WIEN2k package).

7.6.2 Dimensioning parameters

The following parameters (collected in file param.inc r or param.inc c) are used:

LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)
LMMX number of LM terms in potential (should be at least NCOM-1)
LOMAX highest l for local orbital basis (consistent with input in case.in1)
NMATMAX maximum size of H,S-matrix (defines size of program, should be chosen accord-

ing to the memory of your hardware, see chapter 11.2.3!)
NRAD number of radial mesh points
NSYM order of point group
NUME maximum number of energy eigenvalues per k-point
NVEC1 defines the largest triple of integers which define reciprocal
NVEC2 K-vectors when multiplied with the reciprocal Bravais matrix
NVEC3
restrict output for mpi-jobs, limits the number of case.output1 X proc XXX files to “re-

strict output”

7.6.3 Input

Below a sample input is shown for TiO2 (rutile), one of the test cases provided in the WIEN2k
package. The input file is written automatically by LSTART, but was modified to set APW only for
Ti-3d and O-2p orbitals.

------------------ top of file: case.in1 --------------------
WFFIL EF=0.5000 (WFPRI,WFFIL,SUPWF ; wave fct. print,file,suppress
7.500 10 4 ELPA pxq BL 64 (R-mt*K-max; MAX l, max l for hns )
0.30 5 0 (global energy parameter E(l), with 5 other choices, LAPW)
0 -3.00 0.020 CONT 0 ENERGY PARAMETER for s, LAPW
0 0.30 0.000 CONT 0 ENERGY PARAMETER for s-local orbital, LAPW-LO
1 -1.90 0.020 CONT 0 ENERGY PARAMETER for p LAPW
1 0.30 0.000 CONT 0 ENERGY PARAMETER for p-local orbitals LAPW-LO
2 0.20 0.020 CONT 1 APW
0.20 3 0 (global energy parameter E(l), with 1 other choice, LAPW)
0 -0.90 0.020 STOP 0 LAPW
0 0.30 0.000 CONT 0 LAPW-LO
1 0.30 0.000 CONT 1 APW
K-VECTORS FROM UNIT:4 -9.0 2.0 69 emin/emax/nband
1.d-15 0.0 spro_limit for it.diag., lambda for it.diag
------------------- bottom of file ------------------------

Interpretive comments follow:

line 1: free format
switch, EF

switch WFFIL standard option, writes wave functions to file case.vector (needed
in lapw2)

SUPWF suppresses wave function calculation (faster for testing eigenvalues
only)

WFPRI prints eigenvectors to case.output1 and writes case.vector (pro-
duces long outputs!)
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EF optional input. If “EF=” key is present, lapw1 reads EF and sets the de-
fault energy parameters (0.3) to “EF-0.2” or “EF+0.2” (when a “shallow-
LO” is present) Ry.

line 2: free format
rkmax, lmax, lnsmax, library, gridshape, bl, bd, memory

rkmax Rmt ∗ Kmax determines matrix size (convergence), where Kmax is the
plane wave cut-off, Rmt is the smallest of all atomic sphere radii. Usu-
ally this value should be between 5 and 9 (APW+lo) or 6 - 10. (LAPW-
basis) (K2

max would be the plane wave cut-off parameter in Ry used
in pseudopotential calculations.) Note that d (f) wavefunctions con-
verge slower than s and p. For systems including hydrogen with short
bondlength and thus a very small Rmt (e.g. 0.7 a.u.), RKmax = 3
might already be reasonable, but convergence must be checked for a
new type of system. For a hint of a reasonable Rmt ∗ Kmax identify
which atom has the smallest Rmt and checkout the Table given at
http://www.wien2k.at/reg user/faq/rkmax.html.
Note, that the actual matrix size is written on case.scf1. It is determined
by whatever is smaller, the plane wave cut-off (specified with RKmax)
or the maximum matrix dimension NMATMAX, (see previous section).

lmax maximum l value for partial waves used inside atomic spheres (should
be between 8 and 12)

lvnsmax maximum l value for partial waves used in the computation of non-
muffin-tin matrix elements (lvnsmax=4 is quite good, but for large
spheres and highest precision one sould increase it to eg. 6). Larger
lvnsmax may increase cpu time significantly.

NOTE: the following parameters are optional and influence only the behav-
ior/speed of mpi-parallel calculations

library ELPA ELPA is used to solve the eigenvalue problem in case of parallel calcu-
lations (default, several times faster than ScalaPACK).

SCALA ScaLAPACK is used to solve the eigenvalue problem in case of parallel
calculations.
Note, that this switch is only used, if lapw1 has been compiled with
-DELPA.

gridshape pxq pxq processor grid for parallel calculations
qxp qxp processor grid (for rectangular grids; p is the large, and q the small

dimension)
blocksize BL xx BLOCK size xx (default=192) for Hamilt and hns.F, may influence the

cpu time in mpi-parallel calculations. BL=999 is an attemp to optimize
this value automatically

blocksize BD xx BLOCK size xx (default=32) for diagonalization, may influence the cpu
time in mpi-parallel calculations

memory hm default for parallel calculations using ELPA. There has to be enough
memory to allocate an additional array of the size of H.

lm can be used for calculations with ELPA if the memory is limited. How-
ever, a (small) performance penalty occurs due to more MPI communi-
cation. (not active at the moment)

line 3: free format
Etrial, ndiff, Napw
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Etrial default energy used for all El to obtain ul(r, El) as regular solution of
the radial Schrödinger equation [used in equ.2.4,2.7] (see figure 7.2).

ndiff number of exceptions (specified in the next ndiff lines)
Napw 0 ... use LAPW basis, 1 ... use APW-basis for all “global” l values of this

atom. We recommend to use LAPW here.

line 4: format(I2,2F10.5,A4,I2)
l, El, de, switch, NAPWL

l l of partial wave
El El for L=l
de energy increment

de=0: this E(l) overwrites the default energy (from line 3)
de6= 0: a search for a resonance energy using this increment is done.
Use very small de for semicore states or high precision total energy
comparisons. The radial function ul(r, E) up to the muffin-tin radius
RMT varies with the energy. A typical case is schematically shown in
Fig. 7.2.
At the bottom of the energy bands u has a zero slope (bonding state),
but it has a zero value (antibonding state) at the top of the bands. One
can search up and down in energy starting with El using the increment
de to find where ul(RMT , E) changes sign in value to determine Etop
and in slope to specify Ebottom. If both are found El is taken as the
arithmetic mean and replaces the trial energy. Otherwise El keeps the
specified value. For Etop and Ebottom bounds of +1 and -10 Ry are de-
fined respectively, and if they are not found, they remain at the initial
value set to -200.

switch used only if de.ne.0
CONT calculation continues, even if either Etop or Ebottom are not found
STOP calculation stops if not both Etop and Ebottom are found (especially use-

ful for semi-core states)
NAPWL 0 ... use LAPW basis, 1 ... use APW-basis, 2 ... use HDLO for this

l value of this atom. We recommend to use APW+lo when the cor-
responding wavefunction is “localized” and thus difficult to converge
with standard LAPW (like 3d functions) and/or when the respective
atomic sphere is small compared to the other spheres in the unit cell.
Optionally one can change here the usage of APW to LAPW (change 1
to 0 after the CONT/STOP switch), since often APW is necessary only
for orbitals which are more difficult to converge (3d, 4f) or have smaller
Rmt.

>>>:line 4 is repeated ndiff times (see line 3) for each exception. If the same l value is specified
more than once, local orbitals are added to the (L)APW basis. You can add multiple LOs at
much higher energies (HELOs) for a better description of unoccupied states (see eg. for NMR
calculations). In addition one can define ONE HDLO per l-value when the additional line has
NAPWL=2. The first energy (E1) is used for the usual LAPW’s and the second energy (E2)
for the LOs, which are formed according to (see equ. 2.7): uE1

+ u̇E1
+ uE2

.
Note: The default energy parameters (0.30) are replaced by an energy “EF−0.2”, or by “EF +0.2” if
a shallow semicore state (ELO > −2.0Ry) has been defined too. Please read also the comments about
run lapw in section 5.1.4. In addition, you may want to change the automatically created input
and add HDLOs (mainly for d- or f states) or HELOs (local orbitals at high energies) to reduce the
linearization error of valence or conduction band states, respectively (e.g. for spectroscopy you could
put s, p, d, and/or f-LOs at very high energies (typically more than about 3.0 Ry) to better describe
unoccupied states.
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>>>:lines 3 and 4 are repeated for each non equivalent atom

l

Etop

Ebottom

Ebottom
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Etop

u (r,E)l

RMT

E

DOS
r

E

Figure 7.2: Schematic dependence of DOS and ul(r, El) on the energy

line 5: format (20x,i1,2f10.1,i6)
unit-number, Emin, Emax, nband, divide

unit-
number

file number from which the k-vectors in the irreducible wedge of the
Brillouin zone are read. Default is 4, for which the corresponding infor-
mation is contained in case.klist (generated by KGEN). Should not
be changed.

EMIN,
EMAX

energy window in which eigenvalues shall be searched (overrides set-
ting in case.klist). A small window saves computer time, but it also
limits the energy range for the DOS calculation of unoccupied states.
Note: When using ELPA for MPI-parallel computations EMAX does
NOT determine the largest eigenvalue and is ignored. To increase the
number of computed eigenvalues in that case you have to increase
nband.

nband number of eigenvalues calculated with iterative diagonalization and
when ELPA is used (for MPI-parallel computation). Set automatically
to nband = (ne ∗ 2.0 + 5)/ispin (where ispin is 2 for non-spinpolarized
and 1 for spinpolarized cases) in lstart and init lapw. Larger val-
ues will lead to more cpu-time. (optional input)

divide optional keyword to trigger the divide+conquer diagonalization, which
could be useful for “all” eigenvalues (optional input)

line 6: free format; optional input line, but necessary if k-vectors are read from unit 5
spro limit, lambda iter

spro limit limit for detection of linear dependency for iterative diagonalization
(optional input), typical around 1.d-15

lambda iter optional λ value for preconditioner of iterative diagonalization (see
above). By default we use λ = 0, but in some cases convergence can
be improved by a small (around 1.0) positive or negative λ

line 7: format (A10,4I10,3F5.2); (only when unit-number=5, not recommended, use unit 4 and
case.klist)
name, ix,iy,iz, idv, weight

name name of k-vector (optional)
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>>>: the last line must be END !!
ix,iy,iz,
idv

defines the k-vector, where x= ix/idv etc. We use cartesian coordi-
nates in units of 2π/a, 2π/b, 2π/c for P, C, F and B cubic, tetragonal
and orthorhombic lattices, but internal coordinates for H and mono-
clinic/triclinic lattices

weight of k-vector (order of group of k)

>>>: line 7 is repeated for each k-vector in the IBZ. The utility program kgen (see section 6.5)
provides a list of such vectors (on a tetrahedral mesh) in case.klist.

>>>: the last line must be END

7.7 HF (Calculates the hybrid orbitals and eigenvalues)

hf calculates the orbitals and eigenvalues for hybrid functionals using the 2nd variational pro-
cedure, i.e., the semilocal orbitals generated by lapw1 are used as basis functions for the 2nd
variational Hamiltonian [Tran and Blaha, 2011]. The number of these basis functions is deter-
mined by nband in case.inhf, but you have to make sure that lapw1 calculates sufficient bands,
which is determined by EMAX (or in case of MPI-parallel computations with ELPA by nband) in
case.in1(c). The hybrid orbitals are stored in case.vectorhf (full Brillouin zone).

Since calculations with hybrid functionals are much more expensive than with semilocal function-
als, it is important to choose carefully the values of the various parameters (nband, gmax, lmaxe
and lmaxv) in case.inhf because the computational time will depend strongly on them. Choos-
ing carefully the value of a parameter means to determine (by test calculations) the lowest value
which is enough for the accuracy that is needed. This will depend on the solid, the property (e.g.,
lattice constant or band gap) and the RMT. The smaller the RMT is, the more lmaxe and lmaxv can
be chosen to be small, while gmax will need to be increased.

Setting up a hybrid calculation needs some additional considerations and is described in detail
in Sec. 4.5.9. Parallel execution (fine grain MPI and on the k-point level) is also possible and is
described in Secs. 4.5.9 and 5.5. The use of HDLOs is not supported, eventually use HELOs instead,
but be careful with the setting of the energy parameter.

Beside the selfconsistent calculations, it is also possible to calculate the total energy with hybrid
functionals non-selfconsistently (switch -nonself) and to calculate the hybrid eigenvalues (but
not the orbitals) in a cheap way (switch -diaghf).

7.7.1 Execution

The program hf is executed by invoking the command:

x hf [-up/dn -c -p -band -diaghf -nonself -newklist -redklist
-mode1/mode2 -so] or
hf hf.def or hfc hf.def

7.7.2 Input

---------------- top of file: case.inhf --------------------
0.25 alpha
T screened (T) or unscreened (F)
0.165 lambda
xx nband
6 gmax
3 lmaxe
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3 lmaxv
1d-3 tolu
---------------- bottom of file: --------------------

Interpretive comments on this file are as follows:

line 1: free format

α fraction (α ∈ [0, 1]) of Hartree-Fock exchange

line 2: free format

screening if set to F (false), no screening is applied to the exchange. If set to
T (true), the exchange is screened by means of the Yukawa potential
and the screening parameter λ will have to be specified in the next line.
Note, that unscreend HF requires a denser k-mesh than screened HF.

line 3: free format

λ screening parameter in bohr−1. This line should be present only if
screening is set to T (true) in line 2. With the value λ = 0.165 bohr−1,
the results are very close to the values from the HSE06 hybrid functional
[Tran and Blaha, 2011]. Values for λ smaller than 0.0001 or larger than
∼ 5 can sometimes lead to suspicious results due to numerical instabil-
ities.

line 4: free format

nband the number of bands used for the 2nd variational procedure. nband
should be at least equal to the number of (partially) occupied bands
plus one. The choice for nband will depend strongly on the studied
property and accuracy needed. If the switch -diaghf is used, then
the accuracy of the eigenvalues will not depend on the value of nband,
therefore nband can be chosen as the smallest value that you want (but
still at least to the number of occupied bands plus one).

line 5: free format

gmax magnitude of the largest vector G in the Fourier expansion of the prod-
uct of two orbitals and the generated potential in the interstitial region
(Eqs. (13) and (14) in [Tran and Blaha, 2011]). gmax=6 represents a good
compromise between computational time and accuracy.

line 6: free format

lmaxe maximum value of the angular momentum for the expansion in spheri-
cal harmonics of the product of two orbitals and the generated potential
inside the atomic spheres (Eqs. (13) and (14) in [Tran and Blaha, 2011]).
lmaxe=3 or 4 are usually large enough for good accuracy for light ele-
ments. For systems with f electrons, the value lmaxe=6 may be neces-
sary.

line 7: free format
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lmaxv maximum value of the angular momentum of the expansion of the or-
bitals (`i in Eq. (15) in [Tran and Blaha, 2011]). The value should be at
least equal to the largest chemical ` present in the system.

line 8: free format

tolerance below this value, the double radial integrals in Eq. (26)
[Tran and Blaha, 2011] are neglected. With tolu=1d-3 (or even 1d-2) not
much accuracy is lost.

7.8 LAPWSO (adds spin orbit coupling)

lapwso includes spin-orbit (SO) coupling in a 2nd variational procedure and computes eigenval-
ues and eigenvectors (stored in case.vectorso) using the scalar-relativistic wavefunctions from
lapw1. For reference see [Singh and Nordström, 2006, Novák, 1997]. The SO coupling must be
small, as it is diagonalized in the space of the scalar relativistic eigenstates. For large spin orbit
effects it might be necessary to include many more eigenstates from lapw1 by increasing EMAX
in case.in1 (up to 10 Ry!) - if you are running MPI-parallel calculations with ELPA you have
to increase nband in case.in1 instead!. We also provide an additional basisfunction, namely a
”relativistic-LO” (RLO) with a p1/2 radial wavefunction, which improves the basis and removes to
a large degree the dependency of the results on EMAX and RMT (see [Kuneš et al., 2001]). They
cannot be used together with HDLOs or HELOs, but are particular helpfull for heavier atoms with
semicore p-states. They must not be used for EFG calculations because they may add a diverging
term at the nucleus which spoils the EFGs. SO is considered only within the atomic spheres and
thus the results may depend to some extent on the choice of atomic spheres radii. The nonspherical
potential is neglected when calculating dV

dr . Orbital dependent potentials (LDA+U, EECE or OP)
can be added to the hamiltonian in a cheap and simple way.

In spin-polarized calculations the presence of spin-orbit coupling may reduce symmetry and even
split equivalent atoms into non-equivalent ones. It is then necessary to consider a larger part of
the Brillouin zone and the input for lapw2 should also be modified since the potential has lower
symmetry than in the non-relativistic case. The following inputs may change:

I case.struct
I case.klist
I case.kgen
I case.in2c
I case.in1

We recommend to use init so (see Sec.5.2.18) which helps you together with symmetso (see
Sec.9.29) to setup spinorbit calculations.

Note: SO eigenvectors are complex and thus lapw2c must be used in a selfconsistent calculation.

7.8.1 Execution

The program lapwso is executed by invoking the command:

x lapwso [ -up -p -c -orb -hf] or
lapwso lapwso.def

where here -up indicates a spin-polarized calculation (no “-dn” is needed, since spin-orbit will mix
spin-up and dn states in one calculation).
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7.8.2 Dimensioning parameters

The following parameters are used (collected in file module.f):

FLMAX constant = 3
LMAX highest l of wave function inside sphere (consistent with lapw1)
LOMAX max l for local orbital basis
NRAD number of radial mesh points

7.8.3 Input

A sample input for lapwso is given below. It will be generated automatically by init so

------------------ top of file: case.inso --------------------
WFFIL
4 0 0 llmax,ipr,kpot
-10.0000 1.5000 Emin, Emax

0 0 1 h,k,l (direction of magnetization)
2 number of atoms with RLO

1 -3.5 0.005 STOP atom-number, E-param for RLO
3 -4.5 0.005 STOP atom-number, E-param for RLO
1 2 number of atoms without SO, atomnumbers

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: format(A5)
switch

WFFIL wavefunctions will also be calculated for scf-calculation. Otherwise
only eigenvalues are calculated.

line 2: free format
LLMAX, IPR, KPOT

LLMAX maximum l for wavefunctions
IPR print switch, larger numbers give additional output.
KPOT 0 V(dn) potential is used for < dn|V |dn > elements, V(up) for

< up|V |up > and [V(dn)+V(up)]/2 for < up|V |dn >.
1 averaged potential used for all matrix elements.

line 3: free format
Emin, Emax

Emin minimum energy for which the output eigenvectors and eigenenergies
will be printed (Ry)

Emax maximum energy

line 4: free format

h,k,l vector describing the direction of magnetization. For R lattice use h,k,l
in rhombohedral coordinates (not in hexagonal)

line 5: free format

nlr number of atoms for which a p1/2 LO should be added
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line 6: free format
nlri, El, de, switch

nlri atom-number for which RLO should be added
El El for L=l
de energy increment (see lapw1)
switch used only if de.ne.0

CONT calculation continues, even if either Etop or Ebottom are not found
STOP calculation stops if not both Etop and Ebottom are found (especially use-

ful for semi-core states)

>>>: line 6 must be repeated “nlr” times (or should be omitted if nlr=0).
line 7: free format

noff, (iatoff(i),i=1,noff)

noff number of atoms for which SO is switched off (for “light” elements,
saves time)

iatoff atom-numbers

7.9 LAPW2 (generates valence charge density expansions)

lapw2 uses the files case.energy and case.vector and computes the Fermi-energy (for a
semiconductorEF is set to the valence band maximum) and the expansions of the electronic charge
densities in a representation according to eqn. 2.10 for each occupied state and each k-vector;
then the corresponding (partial) charges inside the atomic spheres are obtained by integration.
In addition “Pulay-corrections“ to the forces at the nuclei and valence stress contributions (time
consuming) are calculated here. For systems without inversion symmetry you have to use the
program lapw2c (in connection with lapw1c).

The partial charges for each state (energy eigenvalue) and each k-vector can be written to files
case.help031, case.help032 etc., where the last digit gives the atomic index of inequiva-
lent atoms (switch -help files). Optionally these partial charges are also written to case.qtl
(switch -qtl). In order to get partial charges for bandstructure plots, use -band, which sets the
“QTL option and uses “ROOT” in case.in2.

For meta-GGA calculations kinetic energy densities are written to case.tauval(switch -tau)
and for DFT+U calculations the density matrices case.dmatup/dn are calculated when the switch
-orb is activated.

Some other switches change the input file case.in2 temporarily and are described in the input
section.

7.9.1 Execution

The program lapw2 is executed by invoking the command:

x lapw2 [-c -up|dn -p -so -orb -qtl -fermi -efg -hf -redklist
-band -eece -tau -vresp -help files -emin X -all X Y -scratch
dir -alm -almd -qdmft -in1orig] or
lapw2 lapw2.def [proc#] or lapw2c lapw2.def [proc#]

where proc# is the i-th processor number in case of parallel execution (see Fig. 5.2). The -so switch
sets -c automatically.
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For complex calculations case.in2c is used. For a spin-polarized case see the fcc Ni test case in
the WIEN2k package.

7.9.2 Dimensioning parameters

The following parameters are used (collected in file modules.F):

IBLOCK Blocking parameter (32-255) in l2main.F, optimize for best performance
LMAX2 highest l in wave function inside sphere (smaller than in lapw1, at present must

be .le. 10)
LOMAX max l for local orbital basis
NCOM number of LM terms in density
NGAU max. number of Gaunt numbers
NRAD number of radial mesh points
restrict output for mpi-jobs, limits the number of case.output2 X proc XXX files to “re-

strict output”

7.9.3 Input

A sample input for lapw2 is listed below, it is generated automatically by the programs lstart
and symmetry.

------------------ top of file: case.in2 --------------------
TOT (TOT,FOR,STR,STRF,QTL,EFG)
-1.2 32.000 0.5 0.05 1 (EMIN, # of electrons,ESEPERMIN, ESEPER0,iqtlsave)
TETRA 0.0 (EF-method (ROOT,TEMP,GAUSS,TETRA,ALL),value)

0 0 2 0 2 2 4 0 4 2 4 4
0 0 1 0 2 0 2 2 3 0 3 2 4 0 4 2 4 4

14.0 (GMAX)
FILE (NOFILE, optional)
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: format(2A5)
switch, EECE

switch TOT total valence charge density expansion inside and outside spheres
FOR same as TOT, but in addition a “Pulay” force contribution is calculated

(this option costs some extra computing time and thus should be per-
formed only at the final scf cycles, see run lapw script in sec. 5.1.4)

STR same as TOT, but in addition the valence stress contributions are cal-
culated. Very expensive, makes lapw2 10-100 slower, only when con-
verged (see above).

STRF same as FOR, but in addition the valence stress contributions are calcu-
lated (see above).

QTL partial charges only (generates file case.qtl for DOS calculations), set
automatically by switch -qtl

EFG computes decomposition of electric field gradient (EFG), contributions
from inside spheres (the total EFG is computed in lapw0), set automat-
ically by switch -efg.

ALM this generates two files, case.radwf and case.almblm, where the
radial wavefunctions and the Alm, Blm, Clm coefficients of the wave-
function inside spheres are listed. Do not set it manually, but using the
-alm switch. The file case.almblm can get very big.
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ALMD this generates two files, case.radwf and case.almblm, where the ra-
dial wavefunctions and the Alm, Blm, Clm coefficients of the wavefunc-
tion inside spheres are listed in a format usable for the TRIQS DMFT
code. Do not set it manually, but using the -almd switch. The file
case.almblm can get very big.

CLM CLM charge density coefficients only
FERMI Fermi energy only, this produces weight files for parallel execution

and for the optic and lapwdm package, set automatically by switch
-fermi.

>>>: TOT and FOR are the standard options, QTL is used for density of states
(or energy bandstructure) calculations, EFG for analysis, while FOURI,
CLM are for testing only.

EECE if set to “EECE”, calculates the density for specified atoms and angu-
lar momentum only. Used for exact-exchange or hybrid-calculations,
usually set automatically by runsp lapw -eece

line 2: free format
emin, ne, esepermin, eseper0, iqtlsave

emin lower energy cut-off for defining the range of occupied states, can be
set temporarily to “X” by switch -emin X or -all X Y

ne number of electrons (per unit cell) in that energy range
esepermin LAPW2 tries to find the “mean” energies for each l channel, for both the

valence and the semicore states. To define “valence” and “semicore” it
starts at (EF - “esepermin”) and searches for a “gap” with a width of
at least “eseper0” and defines this as separation energy of valence and
semicore

eseper0 minimum gap width (see above). The values esepermin and eseper0
will only influence results if the option -in1new is used

iqtlsave optional value, checks if the low-energy bandranges (below -2 Ry) are
“narrow” (below 0.2 Ry) and stops (iqtlsave=1 = default) / does not
stop (iqtlsave=0). You may have to switch it off for extreme pressures,
because then you may have large band width even for semi-core states.
In additon, iqtlsave=-1 switches off the ”QTL-B.gt.15” stop, i.e. the cal-
culations will continue even when a possible ghoststate has been de-
tected. Use with great care, it should be at best a temporary fix and
should not appear in the final scf cycles.

line 3: format(a5,f10.5)
efmod, eval

efmod determines how EF is determined
ROOT EF is calculated and k space integration is done by root sampling (this

can be used for insulators, but for metals poor convergence is found)
TEMP EF is calculated where each eigenvalue is temperature broadened using

a Fermi function with a broadening parameter of eval Ry. The total
energy is corrected corresponding to T=0K. (e.g. eval=0.002 Ry gives
good total energy convergence, but has no “physical“ justification)

TEMPS EF is calculated where each eigenvalue is temperature broadened using
a Fermi function with a broadening parameter of eval Ry. The total
energy is corrected by -TS corresponding to the temperature specified
by eval (e.g. eval=0.002 Ry corresponds to about 40 C)
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GAUSS EF is calculated as above but a Gaussian smearing method is used with
a width of eval Ry. (e.g. eval=0.002 gives good total energy conver-
gence, but has no “physical“ justification).

TETRA EF is calculated and k space integration is done by the modified
(if eval is .eq. 0) or standard (eval .ge. 100) tetrahedron-method
[Blöchl et al., 1994]. This “standard” scheme is recommended for
optic. In this case the file case.kgen, consistent with the k-mesh
used in lapw1, must be provided (see Sec. 7.6). This is the recom-
mended option although convergence may be slower than with Gauss-
or temperature-smearing. TETRA may lead to problems (wrong num-
ber of electrons) for 2D-BZ meshes (as for surface slabs or cells with
a large c-parameter) and a mesh-division of ”1”. Use TEMP in these
cases.

ALL All states up to eval are used. This can be used to generate charge den-
sities in a specified energy interval, can be set temporarily by switch
-all X Y.

eval when efmod is set to TEMP(S) (eval=0 will lead to room temperature
broadening, 0.0018 Ry) or GAUSS, eval specifies the width of the broad-
ening (in Ry), if efmod is set to ALL, eval specifies the upper limit of the
energy window (in Ry; can be set temporarily by switch -all X Y), if
efmod is set to TETRA, eval .ge. 100 specifies the use of the standard
tetrahedron method instead of the modified one (see above). By de-
fault, TETRA will average over partially occupied degenerate states at
EF with a degeneracy criterium D = 1.d-6. You can modify this by set-
ting eval equal to your desired D (or 100+D).

optional line 3a: free format (ONLY when EECE is set)

nat rho number of atoms for which a specific density should be calculated

optional line 3b: free format (ONLY when EECE is set)
jatom rho, l rho

jatom rho index of atom for which a specific density should be calculated
l rho angular momentum l-value for which a specific density should be cal-

culated

>>>line 3b: must be repeated nat rho times
line 4: format (121(I3,I2))

L,M LM values of lattice harmonics expansion (equ. 2.10), defined according
to the point symmetry of the corresponding atom; generated in SYM-
METRY, MUST be consistent with the local rotation matrix defined in
case.struct (details can be found in [Kara and Kurki-Suonio, 1981]).
CAUTION: additional LM terms which do not belong to the lattice har-
monics will in general not vanish and thus such terms must be omitted.
Automatic termination of the lm series occurs when a second 0,0 pair
appears within the list. When you change the l,m list during an SCF
calculation the Broyden-Mixing is restarted in MIXER.

>>>line 4: must be repeated for each inequivalent atom
line 5: free format
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Symmetry LM combinations
23 0 0, 4 0, 4 4, 6 0, 6 4,-3 2, 6 2, 6 6,-7 2,-7 6, 8 0, 8 4, 8 8,-9 2,-9 6,-9 4,-9 8,10 0, 10 4,10 8, 10 2, 10 6, 10 10
M3 0 0, 4 0, 4 4, 6 0, 6 4, 6 2, 6 6, 8 0, 8 4, 8 8,10 0, 10 4,10 8, 10 2, 10 6, 10 10
432 0 0, 4 0, 4 4, 6 0, 6 4, 8 0, 8 4, 8 8,-9 4,-9 8,10 0, 10 4,10 8
-43M 0 0, 4 0, 4 4, 6 0, 6 4,-3 2,-7 2,-7 6, 8 0, 8 4, 8 8,-9 2,-9 6,10 0, 10 4,10 8
M3M 0 0, 4 0, 4 4, 6 0, 6 4, 8 0, 8 4, 8 8,10 0, 10 4,10 8

Table 7.56: LM combinations of “Cubic groups” (3‖(111)) direction, requires “positive atomic in-
dex” in case.struct. Terms that should be combined [Kara and Kurki-Suonio, 1981] must follow one
another.

Symmetry Coordinate axes Indices of Y±LM crystal system
1 any ALL (±l,m) triclinic
-1 any (±2l,m)
2 2‖ z (±l,2m) monoclinic
M m⊥z (±l,l-2m)
2/M 2‖z, m⊥z (±2l,2m)
222 2‖z, 2‖y, (2‖x) (+2l,2m), (-2l+1,2m) orthorhombic
MM2 2‖z, m⊥y, (2⊥x) (+l,2m)
MMM 2⊥z, m⊥y, 2⊥x (+2l,2m)
4 4‖z (±l,4m) tetragonal
-4 -4‖z (±2l,4m), (±2l+1,4m+2)
4/M 4‖z, m⊥z (±2l,4m)
422 4‖z, 2‖y, (2‖x) (+2l,4m), (-2l+1,4m)
4MM 4‖z, m⊥y, (2⊥x) (+l,4m)
-42M -4‖z, 2‖x (m=xy→yx) (+2l,4m), (-2l+1,4m+2)
4MMM 4‖z, m⊥z, m⊥x (+2l,4m)
3 3‖z (±l,3m) rhombohedral
-3 -3‖z (±2l,3m)
32 3‖z, 2‖y (+2l,3m), (-2l+1,3m)
3M 3‖z, m⊥y (+l,3m)
-3M -3‖z, m⊥y (+2l,3m)
6 6‖z (±l,6m) hexagonal
-6 -6‖z (+2l,6m), (±2l+1,6m+3)
6/M 6‖z, m⊥z (±2l,6m)
622 6‖z, 2‖y, (2‖x) (+2l,6m), (-2l+1,6m)
6MM 6‖z, m⊥y, (m⊥x) (+l,6m)
-62M -6‖z, m⊥y, (2‖x) (+2l,6m), (+2l+1,6m+3)
6MMM 6‖z, m⊥z, m⊥y, (m⊥x) (+2l,6m)

Table 7.57: LM combination and local coordinate system of “non-cubic groups” (requires “negative
atomic index” in case.struct)
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GMAX max. G (magnitude of largest vector) in charge density Fourier expan-
sion. For systems with short H bonds (RMT(H)0̃.55 bohr, GMAX=25)
and for small spheres of C, N, or O with RMT1̃.1 bohr (GMAX=16)
larger values could be necessary and are set automatically during
initialization. Calculations using GGA (potential option 13 or 14 in
case.in0) should also employ a larger GMAX value (e.g. 14), since the
gradients are calculated numerically on a mesh determined by GMAX.
When you change GMAX during an scf calculation the Broyden-Mixing
is restarted in mixer.

line 6: A4

reclist FILE writes list of K-vectors into file case.recprlist or reuses this list if
the file exists. The saved list will be recalculated whenever GMAX, or a
lattice parameter has been changed.

NOFILE always calculate new list of K-vectors

7.10 SUMPARA (summation of files from parallel execution)

sumpara is a small program which (in parallel execution of WIEN2k) sums up the densities
(case.clmval *) and quantities from the case.scf2 * files of the different parallel runs.

7.10.1 Execution

The program sumpara is executed by invoking the 2 commands as follows:

x sumpara -d [-up/-dn/-ud -hf] and then
sumpara sumpara.def # of proc

where # of proc is the numbers of parallel processors used. It is usually called automatically
from lapw2para or x lapw2 -p.

7.10.2 Dimensioning parameters

The following parameters are listend in file param.inc, but usually they need not to be modified:

NCOM number of LM terms in density
NRAD number of radial mesh points
NSYM order of point group
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7.11 LAPWDM (calculate density matrix)

This program was contributed by:

	
J.Kuneš and P.Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

lapwdm calculates the density matrix needed for the orbital dependent potentials generated in orb.
Optionally it also provides orbital moments, orbital and dipolar contributions to the hyperfine field
(only for the specified atoms AND orbitals). It calculates the average value of the operator X which
behaves in the same way as the spin-orbit coupling operator: it must be nonzero only within the
atomic spheres and can be written as a product of two operators - radial and angular:

X = Xr(r) ∗Xls(~l, ~s)

Xr(r) and Xls(~l, ~s) are determined by RINDEX and LSINDEX in the input as described below:

I RINDEX=0 LSINDEX=0: the density matrix is calculated (this is needed for LDA+U calcula-
tions)

I RINDEX=1 LSINDEX=1: <X> is number of electrons inside the atomic sphere (for test)
I RINDEX=2 LSINDEX=1: <X> is the < 1/r3 > expectation value inside the atomic sphere
I RINDEX=1 LSINDEX=2: <X> is the projection of the electronic spin inside the atomic sphere

(must be multiplied by g=2 to get the spin moment)
I RINDEX=1 LSINDEX=3: <X> is the projection of the orbital moment inside the atomic

sphere (in case of SO-calculations WITHOUT LDA+U)
I RINDEX=3 LSINDEX=3: <X> is the orbital part of the hyperfine field at the nucleus (for a

converged calculation at the very end)
I RINDEX=3 LSINDEX=5: <X> is the spin dipolar part of the hyperfine field at the nucleus

(for a converged calculation at the very end)

To use the different operators, set the appropriate input. More information and extentions to opera-
tors of similar behavior may be obtained directly from [Novák, 2006]. (RINDEX=3 includes now an
approximation to the relativistic mass enhancement and LSINDEX=5 includes nondiagonal terms)

lapwdm needs the occupation numbers, which are calculated in lapw2. Note: You must not use
ROOT in case.in2 for that purpose.

7.11.1 Execution

The program lapwdm is executed by invoking the command:

x lapwdm [ -up/dn -p -c -so -hf] or
lapwdm lapwdm.def

7.11.2 Dimensioning parameters

The following parameters are used (collected in file param.inc):

mailto:novakp@fzu.cz
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FLMAX constant = 3
LMAX highest l of wave function inside sphere (consistent with lapw1)
LABC highest l of wave function inside sphere where SO is considered
LOMAX max l for local orbital basis
NRAD number of radial mesh points

7.11.3 Input

The required input files (for both, DFT+U or EECE) can be most conveniently generated using the
script init orb lapw(see Sec.5.2.17).

A sample input for lapwdm is given below.

------------------ top of file: case.indm --------------------
-9. Emin cutoff energy
1 number of atoms for which density matrix is calculated
1 1 2 index of 1st atom, number of L’s, L1
0 0 r-index, (l,s)-index

------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format

emin lower energy cutoff (usually set to very low number).

line 2: free format

natom number of atoms for which the density matrix is calculated

line 3: free format
iatom, nl, l

iatom index of atom for which the density matrix should be calculated
nl number of l-values for which the density matrix should be calculated
l l-values for which the density matrix should be calculated

line 3 is repeated natom times t
line 4: free format, optional

RINDEX, LSINDEX, RMTRED

RINDEX 0-3, as described in the introduction to lapwdm
LSINDEX 0-5, as described in the introduction to lapwdm
RMTREDN, optionally allows to check RMT-reduction (by N points) of expecta-

tion values
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7.12 LCORE (generates core states)

lcore is a modified version of the [Desclaux, 1969, Desclaux, 1975] relativistic LSDA atomic code.
It computes the core states (relativistically including SO, or non-relativistically if “NREL” is set in
case.struct) for the current spherical part of the potential (case.vsp). It yields core eigenval-
ues, the file case.clmcor with the corresponding core densities, and the core contribution to the
atomic forces.

7.12.1 Execution

The program lcore is executed by invoking the command:

lcore lcore.def or x lcore [-up|-dn] [-tau|-vresp]

For the spin-polarized case see fcc Ni on the distribution tape. If case.incup and case.incdn
are present for spin-polarized calculations, different core-occupation (“open core” approximation
for 4f states or spin-polarized core-holes) for both spins are possible.

7.12.2 Dimensioning parameters

The following parameter is listend in file param.inc:

NRAD number of radial mesh points

7.12.3 Input

Below is a sample input (written automatically by lstart)

for TiO2 (rutile), one of the test cases provided with the WIEN2k

package.

In case of a ”open core” calculation (eg. for 4f states) you may need ”spin-polarized” case.inc
files in order to define different configurations for spin-up and dn. Create two files case.incup
and case.incdn with the corresponding occupations. The runsp lapw script will automatically
copy the corresponding files to case.inc.

------------------ top of file: case.inc --------------------
4 0.0 0 # of orbitals, shift of potential, print switch
1,-1,2 n (principal quantum number), kappa, occup. number
2,-1,2 2s
2,-2,4 2p
2, 1,2 2p*
1 0.0 # of orbital of second atom
1,-1,2 1s
0 end switch
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
nrorb, shift, iprint

nrorb number of core orbitals
shift shift of potential for “positive” eigenvalues (e.g. for 4f states as core

states in lanthanides)
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iprint optional print switch to reduce (0) or increase (1) printing to
case.outputc

line 2: free format
n, kappa, occup

n principle quantum number
kappa relativistic quantum number (see Table 6.6)
occup occupation number (including spin), fractial occupations supported

>>>: line 2 is repeated for each orbital (nrorb times; see line 1)
>>>: line 1 and 2 are repeated for each inequivalent atom. Atoms without core states (e.g. H or

Li) must still include a 1s orbital, but with occupation zero.
line 3: free format

0 zero indicating end of job

7.13 MIXER (adding and mixing of charge densities)

In mixer the electron densities of core, semi-core, and valence states are added to yield the total
new (output) density (in some calculations only one or two types will exist). Proper normalization
of the densities is checked and enforced (by adding a constant charge density in the interstitial). As
it is well known, simply taking the new densities leads to instabilities in the iterative SCF process.
Therefore it is necessary to stabilize the SCF cycle. In WIEN2k this is done by mixing the output
density with the (old) input density to obtain the new density to be used in the next iteration.
Several mixing schemes are implemented, but we mention only:

1. straight mixing as originally proposed by Pratt (52) with a mixing factor Q

ρnew(r) = (1−Q)ρold(r) +Qρoutput(r)

2. a Multi-Secant mixing scheme contributed by L. Marks (see [Marks and Luke, 2008]), in
which all the expansion coefficients of the density from several preceding iterations (usually
6-10) are utilized to calculate an optimal mixing fraction for each coefficient in each iteration.
It is very robust and stable (works nicely also for magnetic systems with 3d or 4f states at EF,
only for ill-conditioned single-atom calculations you can break it) and usually converges at
least 30 % faster than the old BROYD scheme.

3. Two new variants on the Multi-Secant method including a rank-one update (see [Marks, 2013,
Marks, 2021]) which appear to be 5-10% faster and equally robust.

At the outset of a new calculation (for any changed computational parameter such as k-mesh, ma-
trix size, lattice constant etc.), any existing case.broydX files must be deleted (since the iterative
history which they contain refers to a “different“ incompatible calculation).

If the file case.clmsum old can not be found by mixer, a “PRATT-mixing“ with mixing factor
(greed) 1.0 is done.

Note: a case.clmval file must always be present, since the LM values and the K-vectors are read from
this file.

The total energy, the atomic forces and the stress are computed in mixer by reading the case.scf
file and adding the various contributions computed in preceding steps of the last iteration. There-
fore case.scf must not contain a certain “iteration-number” more than once and the number of
iterations in the scf file must not be greater than 999.
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For LDA+U calculations case.dmatup/dn and for onsite-hybrid-DFT (switch -eece)
case.vorbup/dn files will be included in the mixing procedure.

With the mode MSR1a (or MSECa) atomic positions will also be mixed and thus optimized. This
scheme can be a facter or 2-3 faster then the traditional optimization using min lapw and is highly
recommended. It still uses case.inM to control convergence or fix some positions, simular as
min lapw.

There is also a constraint optimization, which allows to optimized atomic positions under cer-
tain constraints in order to find saddle points or reaction barriers. It needs an extra file
case.constraint, which is described in SRC mixer/Docs.

7.13.1 Execution

The program mixer is executed by invoking the command:

mixer mixer.def or x mixer [-orb -eece -dftd3 -dftd4 -tau -vresp]

The different switches create lines in mixer.def for case.dmatup/dn (-orb), case.vorbup/dn
(-eece), case.tausum/up/dn (-tau) and case.vrespsum/up/dn (-vresp). The switches -dftd3
or -dftd4 direct mixer to add the corresponding total energy contributions. A spin-polarized case
will be detected automatically by x due to the presence of a case.clmvalup file. For an example see
fcc Ni (sec. 10.2) in the WIEN2k package.

7.13.2 Dimensioning parameters

The following parameters are collected in file modules.f, :

NCOM number of LM terms in density
NRAD number of radial mesh points
NSYM order of point group

7.13.3 Input

Below a sample input (written automatically by lstart) is provided for TiO2 (rutile), one of the
test cases provided with the WIEN2k package.

------------------ top of file: case.inm --------------------
MSR1 0.d0 YES (PRATT/MSEC1/3/MSR1/a bg charge (+1 for additional e), NORM
0.2 MIXING GREED

1.0 1.0 Not used, retained for compatibility only
999 8 nbroyd nuse
# STIFF, STIFFER, FAST
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: (A5,*)
switch, bgch, norm

switch MSR1 Recommended. A Rank-One Multisecant that is slightly faster than
MSEC3 in most cases. For MSR1a see later.

MSR1a Similar to MSR1, but in addition it optimizes the atomic positions si-
multaneously (see Sect. 5.3.2)
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MSEC3 Multi-Secant scheme (Marks and Luke 2008). This is equivalent to DIIS,
with trust regions added.

MSEC4 similar to MSEC3 (above), but mixes the higher LM values inside
spheres by an adaptive PRATT scheme. This leads to a significant re-
duction of program size and file size (case.broyd*) for unit cells with
many atoms and low symmetry (factor 10-50) with only slightly worse
mixing performance.

MSR2 similar to MSR1 (above), but mixes only the L=0 LM value
PRATT Pratt scheme with a fixed greed
PRAT0 Pratt scheme with a greed restrained by previous improvement, similar

to MSEC3

bgch Background charge to apply to the cell (e.g. use +1 if the system con-
tains an additional electron or -1 to screen a core hole if it is not neutral-
ized by an additional valence electron)

norm YES Charge densities are normalized to sum of Z
NO Charge densities are not normalized

line 2: free format

greed mixing greed Q. Essential for Pratt, less important for other methods.
In these methods in the first iterations the default Q (0.2) is automat-
ically adjusted and reduced/increased by the program. In case of too
large charge fluctuations (divergence and stop of the scf cycle), Q can
be reduced but this can lead to stagnation. One should rarely reduce
this below 0.05.

line 3 (optional): (free format)
f pw, f clm

f pw Not used, retained for input compatibility.

f clm Not used, retained for input compatibility.

line 4 (optional): (free format)
nbroyd, nuse

nbroyd Not used, retained for input compatibility.

nuse For all Multisecant methods: Only nuse steps are used during modified
broyden (this value has some influence on the optimal convergence.
Usually 6-10 seems reasonable and 8 is the default). For MSR1a of large
cells sometimes 16 is better.

line 5 (optional line): (free format)
trust
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STIFF
or
STIFFER

For very difficult cases, where divergence (like spin-polarized systems
with many TM atoms) or endless oszillations occur.

FAST For easy cases to accelarate (also MSR1a).

Several other advances switches are listed in SRC mixer/Docs.

In addition, mixer reads optional control files like .pratt or .msec (mixing factor), which can
be used during scf/MSR1a optimizations or at the very beginning to push convergence. You can
create it using

echo 0.2 > .pratt

These files will be removed automatically once they are used. For additional documentation on
further control files consult SRC mixer/Docs.
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8.1 Afmsim (Virtual tip)

This program simulates an atomic-force-microscop (AFM) image using the “Electric field approxi-
mation” or the “Mirror-charge approximation (Virtual tip)” [Chan et al., 2009] using the calculated
Coulomb potential (there is no explicit tip involved and one needs just an ordinary relaxed surface
calculation).

8.1.1 Execution

The program afmsim is executed by invoking the command:

afmsim afmsim.def or x afmsim

It requires an input file case.inafmsim, which must contain the keywords “GRAD-V” or “MIR-
ROR” to select plotting ∇V (electric field) or the mirror charge approximation [Chan et al., 2009].
In addition file case.xsf, which must contain the Coulomb potential on a 3D-grid above the
surface (prepared by 3ddens) must be present, where the data along z should be on a fine mesh,
since we calculate gradients along z. It creates a file case afmsim.xsf, which can be plotted by
xcrysden. For plotting select a plane normal to your surface (typically 1 Å above the surface) and
vary the height and min/max values for best contrast.

8.2 AIM (atoms in molecules)

This program was contributed by:

	

Javier D. Fuhr and Jorge O. Sofo
Instituto Balseiro and Centro Atomico Bariloche
S. C. de Bariloche - Rio Negro, Argentina
email: fuhr@cab.cnea.gov.ar and sofo@psu.edu
The original code has been significantly sped up by L.Marks (L-
marks@northwestern.edu).

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program analyses the topology of the electron density according to Bader’s “Atoms
in molecules” theory. For more information see [Bader, ] and [Sofo and Fuhr, 2001] and
http://wien2k.at/reg user/textbook/aim sofo notes.pdf.

Basically it performs two different tasks, namely searching for “critical points” (CP) and/or de-
termination of the atomic basins with an integration of the respective charge density. The latter
gives the ”atomic charge” and its ”charge state” (the difference between the nuclear charge and the
atomic charge) at the bottom of case.outputaim.

Using the -dn switch you can integrate the spin-density in the atomic basins to get uniquely defined
magnetic moments of individual atoms, which do not depend on RMT (see [Tran et al., 2020]).

It is important that you provide a “good” charge density, i.e. one which is well converged with
respect to LMMAX in the CLM-expansion (you may have to increase the default LM-list to LM=8
or 10) and with as little “core-leakage” as possible (see lstart, sect. 6.4), otherwise discontinuities
appear at the sphere boundary.

mailto:fuhr@cab.cnea.gov.ar
mailto:sofo@psu.edu
mailto:L-marks@northwestern.edu
mailto:L-marks@northwestern.edu
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8.2.1 Execution

The program aim is executed by invoking the command:

aim aim.def or aimc aim.def or x aim [-dn ]

8.2.2 Dimensioning parameters

The following parameters are listed in file param.inc:

LMAX2 highest L in in LM expansion of charge and potential
NRAD number of radial mesh points
NSYM order of point group

8.2.3 Input

The input file contains “SWITCHES”, followed by the necessary parameters until an END-switch
has been reached.

Examples for “critical-point” searches and “charge-integration” are given below:

---------------- top of file: case.inaim --------------------
CRIT
1 # index of the atom (counting multiplicity)
ALL # TWO/THRE/ALL /FOUR
3 3 3 # x,y,z nshells (of unit cells)
END
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: A4

CRIT Keyword to calculate critical points

line 2: free format

iatom index of the atom from where the search should be started. This count
includes the multiplicity, i.e. if the first atom has MULT=2, the “sec-
ond atom” has iatom=3 (Do not use simply the atom-numbers from
case.struct)

line 3: A4

KEY TWO, THRE, ALL, or FOUR
defines the starting point for the CP search to be in the middle of 2, 3 or
4 atoms. ALL combines option TWO and THRE together.

line 4: free format
nxsh, nysh, nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated.
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lines 1-4 can be repeated with different atoms or KEYs
line 5: A4

END specifies end of job.

In case.outputaim the critical points are marked with a label :PC

:PC a1 a2 a3 l1 l2 l3 c lap rho iat1 dist1 iat2 dist2

where a1,a2,a3 are the coordinates of the CP in lattice vectors; l1 l2 l3 are the eigenvalues of the
Hessian at the CP; c is the character of the CP (-3, -1, 1 or 3); lap is the Laplacian of the density at
the CP (lap=l1+l2+l3) and rho is the density at the CP (all in atomic units). In case of a bond critical
point (c=-1) also the nearest distances (dist1, dist2) to the two nearest atoms (iat1, iat2) are given.

For convenience run extractaim lapw case.outputaim (see 5.2.12) and get in the file
critical points ang a comprehensive list of the CP (sorted and unique) with all values given
in Å, e/Å3, ... (instead of bohr).

---------------- top of file: case.inaim --------------------
SURF
3 atom in center of surface (including MULT)
40 0.0 3.1415926536 theta, 40 points, from zero to pi
40 -0.7853981634 2.3561944902 phi
0.07 0.8 2 step along gradient line, rmin, check
1.65 0.1 initial R for search, step (a.u)
3 3 3 nshell
IRHO "INTEGRATE" rho
WEIT WEIT (surface weights from case.surf), NOWEIT
30 30 radial points outside min(RMIN,RMT)
END
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: A4

SURF Keyword to calculate the Bader surface.

line 2: free format

iatom index of the atom from where the search should be started. This count
includes the multiplicity, i.e. if the first atom has MULT=2, the “sec-
ond atom” has iatom=3 (Do not use simply the atom-numbers from
case.struct)

line 3: free format
ntheta, thmin, thmax

ntheta number of theta directions for the surface determination. This (and
nphi) determines the accuracy (and computing time).

thmin starting angle for theta
thmax ending angle for theta. If you have higher symmetry, you can change

the angles thmin=0, thmax=π and use only the “irreducible” part, i.e.
when you have a mirror plane normal to z (see case.outputs), restrict
thmax to π/2.

line 4: free format
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nphi, phimin, phimax

nphi number of phi directions for the surface determination
phimin starting angle
phimax ending angle. (see comments for theta to reduce phi from the full 0−2π

integration).

line 5: free format
h0, frmin, nstep

h0 step in real space to follow the gradient (˜ 0.1)
frmin defines the radius, for which the routine assumes that the search path

has entered an atom, given as “rmin = frmin * rmt” ( 0.8-1.0)
nstep number of steps between testing the position being inside or outside of

the surface ( 2-8).

line 6: free format
r0, dr0

r0 initial radius for the search of the surface radius ( 1.5)
dr0 step for the search of the surface radius( 0.1)

line 7: free format
nxsh, nysh, nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated.

line 8: A4

IRHO integrate function on “unit 9” (usually case.clmsum) inside previ-
ously defined surface (stored in case.surf).

line 9: A4

WEIT specifies the use of weights in case.surf.

line 9: free format

npt specifies number of points for radial integration outside the MT ( 30)

line 8: A4

END specifies end of job.
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8.3 BerryPI (Modern theory of polarization)

This program was contributed by:

	
S.J. Ahmed, J. Kivinen, B. Zaporzan, L. Curiel, S. Pichardo, O. Rubel
Thunder Bay Regional Research Institute, Ontario, Canada
Computer Physics Communications 184, 647651 (2013)
Sources available from: https://github.com/rubel75/BerryPI
email: rubelo@mcmaster.ca
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program calculates the spontaneous polarization, Born effective charges or piezoelectric con-
stants using the Berry phase approach. It can also be used to characterize topological materials
(Weyl semimetals). More details about its usage are given in Chapter 5.8.

It consists of a set of Python scripts (requires the NumPi library) and uses wien2wannier for the
calculation of overlap integrals. The main steps of a ‘‘berrypi ’’ call include:

I x kgen -fbz
generate a k-mesh in the full Brillouin zone, default: 4 4 4

I x lapw1 (-up/dn -orb -p)
Calculate wavefunctions for the new k-list

I x lapwso (-up -orb -p) (only when spin-orbit is included)
I x lapw2 -fermi (-up/dn -p -so) to find occupied bands
I write inwf

Prepare the input for w2w with the occupied band range
I write win -band nofile case

Create the input file for w2w
I win2nnkp.py case

Generate the nearest neighbor list of k-points
I x w2w (-up/dn -so -p)

Calculate the overlap matrix Smn(kj , kj+1)
I x w2waddsp (only in case of spin-polarization and SO)
I mmn2pathphase.py case x

Calculate the Berry phase along x-axis

For magnetic calculations the commands write inwf, write win, win2nnkp.py and w2w are per-
formed separately for -up/-dn, except when -sp c is specified when they are only performed for
the up spin. A number of command line options exist, which can be viewed by using the command
berrypi -h. More details can be found in Chapter 5.8

8.4 BROADENING (apply broadening to calculated spectra)

This program was contributed by:

	
Joachim Luitz
IAST Austria
wien2k@luitz.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

https://github.com/rubel75/BerryPI
mailto:rubelo@mcmaster.ca
mailto:wien2k@luitz.at
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The broadening program can be used in conjunction with the TELNES3 (broadening of
case.elnes) or the xspec program (broadening of case.xspec) or the pes program (broaden-
ing of case.pes1 to broaden theoretical spectra by applying a lorentzian broadening for core and
valence life times and a gaussian broadening for spectrometer broadening. The output file will be
called case.broadspeci or case.pes1b.

8.4.1 Execution

Execution

The program broadening is executed by invoking the command:

broadening broadening.def or x broadening [-xspec -pes -up/-dn]

8.4.2 Input

broadening needs one input file - case.inb. When running TELNES3 this input file is automat-
ically created from settings given in case.innes.

GaN
ELNES
1 1 0
0.0 1.0 0.0
0.116 0.116
1 2.15000000000000
0.6
dummy
0.0
0.0
0.0

line value explanation
1 GaN ... Title (of no consequence for the calculation)
2 ELNES/ABS/EMIS/PES Type of input spectrum
3 NC C1 C2 specification of input file: NC number of columns, C1 and

C2 column to broaden
4 ESPLIT XINT1 XINT2 split energy (eV), XINT1—2 relative intensities of spectra

(for overlaying L23 spectra in ELNES)
5 GA GB Lorentian core hole lifetime of the two edges (eV)
6 W WSHIFT W: type of valence broadening (0:none, 1:linear with

E/E0, 2:Muller like E2, 3:Moreau); WSHIFT: edge offset
(eV)

7 S Gaussian spectrometer broadening FWHM in eV
8 dummy dummy keyword for compatibility with lorentz
9-11 E0, E1, E2 quadratic energy dependent broadening (only used for

type ELNES and EMIS when selecting valence broadening
type W=2)

For details of broadening with W = 1,2,3 see the references given in valencebroadening.f. For W=1
we use γ = energy/E0 (typically E0=10.0). For W=2: γ E1 ∗ (energy/E0)2. Larger E0 and/or
smaller E1 reduces broadening.

PES spectra are broadened only with Lorentzian (GA) and Gaussian (S) broadening.
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8.5 DIPAN (Dipolar anisotropies)

This program was contributed by:

	
P. Novák
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program calculates the magnetic dipolar hyperfine field and the dipolar magnetocrystalline
anisotropy by a direct lattice summation over the magnetic moments of all sites.

The magnetic field is given by

~B =
µ0µ

4πr3
[3(~nr̂)r̂ − ~n] (8.1)

where r̂ = ~r/r.
~n = ~M/M is direction of magnetization.
µ0 is permeability of free space; µ0 = 4π10−7 H/m.
~B is the dipolar field in T.
~µ is magnetic dipolar moment in Am2 = J/T, assumed to be parallel to ~n.
r is in m.
We want to express µ in Bohr magnetons µB=9.274078.10−24 J/T and
r in atomic units for length a0 (Bohr radius) a0=5.2917706.10−11 m.
Inserting in (1) gives

~B = 6.258463
µ(µB)

r(a.u.)
3 [3(~nr̂)r̂ − ~n]. (8.2)

Total dipolar field acting on atom i is given by the lattice sum

~Bi = 6.258463
∑
j

µj
r3j

[3(~nr̂j)r̂j − ~n]. (8.3)

Dipolar anisotropy energy is given by the sum

Ean = − 1

2V

∑
j

~Bj~µj (8.4)

when the sum is over atoms in the unit cell, V is the unit cell volume, Factor 1/2 appears because
of the double summation.

Expressing Bj in T, µj in µB and V in (a.u.)3 gives

Ean(J/m3) = −3.129232.107

V (a.u.)3

∑
j

~Bj(T)~µj(µB) (8.5)

mailto:novakp@fzu.cz
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8.5.1 Execution

The program dipan is executed by invoking the command:

dipan dipan.def or x dipan

8.5.2 Dimensioning parameters

The following parameters are listed in files dipan.f:

NATO number of inequivalent atoms in unit cell
NDIF total number of atoms in unit cell

8.5.3 Input

An example is given below:

---------------- top of file: case.indipan -----------------------
160. 0 Rmax (a.u.), ipr (printing option)
-0.26 Magnetic moment of 1st atom (Y) in mu_B
1.525 Magnetic moment of 2nd atom (Co(2c))
1.529 Magnetic moments of 3rd atom (Co(3g)) in mu_B
1381. Volume in a.u.**(-3)
2 ndir: numder of magnetization directions
0. 0. 1. first direction for the magnetization
1. 1. 0. second direction
------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format
Rmax, IPR

Rmax max distance (bohr) for lattice summation. Vary it for convergence
check.

IPR Print switch. IPR=2 produces very large files case.outputdipan and
case.nn dipan

line 2: free format

mm Magnetic moment (µB) of first atom

line 2 must be repeated for every non-equivalent atom in the unit cell
line 3: free format

VOLUME Unit cell volume in bohr**3 (grep :VOL case.scf)

line 4: free format

NDIR number of magnetization directions for which the dipolar contributions
will be calculated. For NDIR > 1 the differences Ean(diri)−Ean(dirj)
are also calculated.

line 5: free format
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h,k,l direction of magnetization

line 5 must be repeated NDIR times

8.6 ELAST (Elastic constants for cubic cases)

This program was contributed by:

	

original author: Thomas Charpin
Lab. Geomateriaux de l’IPGP, Paris, France
(In September 2001 we received the sad notice that Thomas Charpin died in a
car accident).
modified by Ferenc Karsai
Institute for MaterialsChemistry
TU Vienna
ferenc@univie.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This package calculates elastic constants for cubic crystals. It is described in detail by the author in
[Charpin, 2001].

8.6.1 Execution

The package is driven by three scripts:

I init elast:
It prepares the whole calculation and should be run in a directory with a valid case.struct
and case.inst file. It creates the necessary subdirectories elast, elast/eos,
elast/tetra, elast/rhomb, elast/result, the templates for tetragonal and rhombo-
hedral distortion and initializes the calculations using init lapw.

I elast setup:
It should be run in the elast directory, generates the distorted struct-files and eos.job,
rhomb.job and tetra.job. These scripts must be adapted to your needs (spin-
polarization, convergence,...) and run. elast setup can be run several times (for different
distortions,...).

I ana elast:
Once all calculations are done, change into elast/result and run this script. The final
results are stored in elast/result/outputs.

I genetempl, setelast, anaelast:
These three small programs are called by the above scripts.

The following modifications of init elast, elast setup and ana elast prepare input files
for calculations of elastic constants at different pressures and analyze the results:

I init elast pressure:
As in the case of init elast the script is called in the working directory with a valid
case.struct file and requires an input file case.inelastp1 (a template can be found

mailto:ferenc@univie.ac.at
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at $WIENROOT/SRC templates/template.inelastp1). The script creates the direc-
tory elast/ with the necessary subdirectories pressure x/ according to the number x
of pressure changes in the case.inelastp1 input file and the templates for isotropic,
tetragonal and rhombohedral (trigonal) distortions at each pressure (pressure 1/eos,
pressure 1/tetra, pressure 1/rhomb, pressure 2/eos, ...). In each pressure x/
directory a file called z pressure.dat is created with the lattice constant at each pressure
given in case.inelastp1. In contrast to init elast the calculations are initialized us-
ing init lapw in batch mode and the necessary parameters are set in case.inelastp1.
The following small programs and scripts are utilized by init elast pressure:
iniel pressure reader.pl, iniel pressure in2reader.pl, genetempl

I elast setup pressure: Similar to elast setup this script has to be run in the
elast directory and requires the input file elast.inelastp2 (a template can be found at
$WIENROOT/SRC templates/elast.inelastp2). It creates the distorted struct files
and the pressure x/eos.job, pressure x/rhomb.job, pressure x/tetra.job and
pressure x/runjob.x files in each directory pressure x. The three scripts eos.job,
rhomb.job and tetra.job can either be started separately or together by runjob.x.
The number of structure changes per pressure and the calculational parameters are
set in elast.inelastp2. The following small programs and scripts are utilized by
elast setup pressure: elast setup input.pl, setelast pressure

I ana elast pressure: Once all calculations are done, this script (in contrast to ana elast)
has to be run in the elast directory. It requires the pressure x/z pressure.dat files
created by init elast pressure. The final results for a given pressure are stored in
pressure x/elast/result/outputs. Additionally the collective results for all pressure
are stored in the directory elast results. If the script is called with the option –plot (eg.
ana elast pressure --plot) then postscript files for the fits using gnuplot are created in
the pressure x/results/outputs directory. The following small programs and scripts
are utilized by ana elast pressure: anaelast pressure

8.6.2 Input

Below are examples for case.inelastp1 and elast.inelastp2:

---------------- top of file: case.inelastp1 --------------------
15 RMT_reduction
XC_PBE V_xc_potential
-6 CORE_separation
9 RKMAX
10000 NUMBER_of_k-points
15 GMAX
NM SPIN
NM INST
------------------------------------------
7.777777 0
7.655344 10
7.553434 20
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format

RMT
1-100 RMT reduction by X %
OLD RMT values taken from case.struct file in working directory

line 2: free format

Vxc Exchange-correlation potential
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line 3: free format

Esep Energy seperation for core and valence states

line 4: free format

RKMAX RKMAX value

line 5: free format

k-mesh Number of k-points in full BZ

line 6: free format

GMAX GMAX value

line 7: free format

SPIN NM non magnetic
SPIN spin polarized

line 8: free format

INST OLD case.inst file is taken from working directory
NEW new case.inst file is created

line 9: Empty line
line 10-x: free format

a, p

a lattice constant in a.u. at pressure p (determined from e.g. a previous
volume optimization ...)

p pressure p written in pressure x/z pressure.dat

The elast.inelastp2 file looks like:

---------------- top of file: elast.inelastp2 --------------------
iso 0
tet 0
trig 5

-2
-1
0
1
2

ec 0.00001
spin .FALSE.
parallel .TRUE.
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1-3 (optional): free format
distortion, n

distortion if this line is given then the specified distortions will be calculated
iso isotropic distortion
tet tetragonal distortion
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trig trigonal(rhombohedral) distortion
n number of structure changes n for a given type of distortion; the exact

changes in the lattice constant
are given on the following n lines (free format, lines 4-8 in the example
above)

0 default values are taken (−10%,−9%,. . .,−1%,0%,1%,. . .,9%,10% - 21
values)

> 0 change in the lattice constant in %

line 9 (optional): free format

ec energy convergence criterion (if this line is missing then default value
of 0.00001 is used)

line 10 (optional): free format

spin .FALSE. no spin polarization (default)
.TRUE. spin polarization (runsp lapw used instead of run lapw in eos.job,

tetra.job and rhomb.job)

line 11 (optional): free format

parallel .FALSE. default
.TRUE. if .machines exists in the elast/ directory then it will be copied

into pressure x/eos, pressure x/tetra, pressure x/rhomb di-
rectories

8.7 FILTVEC (wave function filter / reduction of case.vector)

This program was contributed by:

	

Uwe Birkenheuer
Max-Planck-Institut für Physik komplexer Systeme
Nöthnitzer Str. 38, D-01187 Dresden, Germany
email: birken@mpipks-dresden.mpg.de
and
Birgit Adolph
University of Toronto, T.O., Canada

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

The program filtvec reduces the information stored in case.vector files by filtering out a
user-specified selection of wave functions. Either a fixed set of band indices can be selected which
is used for all selected k-points (global selection mode), or the band indices can be selected indi-
vidually for each selected k-point (individual selection mode). The complete wave function and
band structure information for the selected k-points and bands is transferred to case.vectorf.
The information on all other wave functions in the original file is discarded. While the structure of

mailto:birken@mpipks-dresden.mpg.de
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the generated case.vectorf file is identical to that of the original case.vector file, the corre-
sponding case.energy file is not updated. Hence, case.vectorf can be used as substitutes for
case.vector only in lapw7. To filter vector files from spin-polarized calculations, filtvec has
to be run separately for both the spin-up and the spin-down files.

filtvec has not yet been adapted for w2web.

8.7.1 Execution

The program filtvec is executed by invoking the command:

filtvec filtvec.def or filtvecc filtvec.def or x filtvec [-c]
[-up|dn] [-hf]

In accordance with the file handling for lapw1 and lapw7 the input vector file case.vector
is assumed to be located in the WIEN scratch directory, while the reduced output vector file
case.vectorf is written to the current working directory. See filtvec.def for details.

8.7.2 Dimensioning parameters

The following parameters are listed in file param.inc (r/c):

NKPT number of k-points
LMAX maximum number of L values used (as in lapw1)
LOMAX maximum L value used for local orbitals (as in lapw1)

The parameter LMAX and LOMAX must be set precisely as in lapw1; all other parameters must not
be chosen smaller than the corresponding parameters in lapw1.

8.7.3 Input file case.inf

Two examples are given below. The first uses global selection mode; the second individual selection
mode.
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I. Global Selection Mode

- - - - - - - - - - - - - - - - - top of file case.inf - - - - - - - - - - - -
3 1 17 33 # number of k-point list items, k-points
2 11 -18 # number of bands, band indices
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

Interpretive comments on this file are as follows.

line 1: free format
kmax ik(1) ... ik(kmax) Number of k-point list items, followed by the list items

themselves. Positive list items mean selection of the k-point
with the specified index; negative list items mean selection
of a range of k-points with indices running from the previ-
ous list item to the absolute value of the current one. E.g. the
sequence 2 -5 stands for 2, 3, 4, and 5.

line 2: free format
nmax ie(1) ... ie(nmax) Number of band index items, followed by the list items

themselves. Again, positive list items mean selection of a
single band index; negative list items mean selection of a
range of band indices.

II. Individual Selection Mode

- - - - - - - - - - - - - - - - - top of file case.inf - - - - - - - - - - - -
2 : # number of k-points
17 4 11 13 15 17 # k-point, number of bands, band indices
33 3 11 -14 18 # k-point, number of bands, band indices
- - - - - - - - - - - - - - - - - end of file - - - - - - - - - - - - - - - - -

Interpretive comments on this file are as follows.

line 1: free format
kmax the number of individual k-points to be selected. This

number must be followed by any text, e.g. ’SELEC-
TIONS’ or simply ’:’, to indicate individual selection
mode.

line 2: free format
ik nmax ie(1) ... ie(nmax) First the index of the selected k-point, then the number

of band index items, followed by the list items for the
current k-point themselves. Positive list items mean se-
lection of the band with the specified index; negative list
items mean selection of a range of band indices running
from the previous list item to the absolute value of the
current one. E.g. the sequence 3 -7 stands for 3, 4, 5, and
7.
This input line has to be repeated kmax-times.
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8.8 FSGEN (Fermi-surface generation)

Unfortunately there is no really versatile tool for Fermi surface generation or analyzing FS proper-
ties. We have collected here a series of small programs together with some description on how to
proceed to generate 2D-Fermisurfaces within WIEN.

I As usually, you have to run an scf cycle and determine a good Fermi-energy. ”Good” means
here a Fermi-energy coming from a calculation with a dense k-mesh.

I You should than create a mesh within a plane of the BZ, where you want to plot the FS. Some
utility programs like sc fs mesh, (fcc, bcc, cxz mon and hex are also available) may help
you here, but only some planes of the BZ have been implemented so far. Please check these
simple programs and modify them according to your needs. Copy the generated k-mesh
fort.2 to case.klist.

I Run lapw1 with this k-mesh.
I Run spaghetti with input-options such that it prints the bands which intersect EF to

case.spaghetti ene (line 10, see sec. 8.25)
I Edit case.spaghetti ene and insert a line at the top:

NX, NY, x-len, y-len, NXinter, NYinter, Invers, Flip
where
NX, NY are the number of points in the two directions
x-len, y-len are the length of the two directions of the plane (in bohr−1, you can find this in
case.spaghetti ene)
NXinter, NYinter: interpolated mesh, e.g. 2*NX-1
Invers: 0/1: mirrors x,y
FLIP: 0/1: flips x,y to y,x

I Run spagh2rho < case.spaghetti ene to convert from this format into a format which
is compatible with the case.rho file used for charge density plotting. It generates files
fort.11, fort.12, ... (for each band separately) and you should use your favorite plotting
program to generate a contourplot of the FS (by using a contourlevel = 0). Alternatively you
can use for plotting:

I Run fsgen lapw 11 xx save filename, which is a small shell script that can plot all
fermi surfaces using the data-files fort.11, fort.12, ... fort.xx generated in the pre-
vious steps. It requires the public domain package pgplot and the contour-plot pro-
gram plotgenc. (The latter can be obtained from http://www.wien2k.at/reg_user/
unsupported/, but you must have installed the pgplot library before.)

8.9 IRelast (Elastic constants for cubic, hexagonal, tetragonal, or-
thorhombic, monoclinic and rhombohedral cases)

This program was contributed by:

	
author: Morteza Jamal
Ghods City-Tehran, Iran
m jamal57@yahoo.com
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This package ([Jamal et al., 2018]) calculates elastic constants for cubic, hexagonal, orthorhom-
bic, tetragonal, monoclinic and rhombohedral symmetry using the second derivatives of poly-

http://www.wien2k.at/reg_user/unsupported/
http://www.wien2k.at/reg_user/unsupported/
mailto:m_jamal57@yahoo.com
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nomial fits of the total energy versus applied strains. It replaces previous versions on our “un-
supported software” page. In the latest version it can also calculate the elastic constants under
pressure.

The package is driven by the following scripts:

I set elast pressure This is an optional step, to be done only when you want to calcu-
late the elastic constants for non-zero pressure. Before you can do this, you need to have
done a volume optimization, so that the equation of state (and thus the pressure-volume
relation) is known. It checks for the necessary files case.struct, case.outputeos or
case.struct, data pressure. When case.outputeos is present, it asks the user in-
teractively for which pressures he wants to calculate the elastic constants and generates n
pressure x/case directories. This option should be used only for cubic cases, since it will
create structures with constant c/a, b/a ratio according to the previously calculated equa-
tion of states (Murnaghan fit). Alternatively, in data pressure (make sure, there is no
case.outputeos) you can specify a list of n “pressure, a, b, c” (in GPa and bohr) values
(which have been obtained previously from c/a and volume optimization) for which the
calculations will be done. At the end, set elast pressure calls set elast lapw auto-
matically.
The following steps must be done in the original case directory (for the elastic constants
at the volume (pressure) of the original case.struct file or for all n pressure x/case
directories.

I set elast lapw:
It prepares the whole calculation and should be run in a directory with a valid
case.struct file. It finds the symmetry of the structure defined in case.struct
and creates the necessary subdirectories elast-constant, elast-constant/c11,
elast-constant/c22, ... and copies information of the present working directory into
those new directories. command init lapw gets information to produce auto init lapw
for automatic initialization. Then it gets the options for running the scf-cycle in the job
files using command run lapw. Finally, it generates the distorted struct files and symm.job
files, where symm stands for CUBIC, HEX, TETRA, ORTHO, MONO, and RHOM, using the
setupc program as it calls the auxiliary programs getcalljob and makestruct.

I modifyjob lapw:
allows you to edit and modify the previously created symm.job files. This step is not neces-
sary when you have specified proper commandline options previously.

I calljob lapw :
will execute all produced job files in elast-constant/c11/case,
elast-constant/c22/case, ... sequentially, but eventually you may run all
those jobs by yourself on different machines in parallel, as these steps can take quite some
time. Once all calculations are done:

I anaIR elast lapw:
finds the symmetry of the original struct file and calls ana elastc lapw script and deter-
mines the elastic constants Cij (using the auxiliary program fitdivELC) as well
as the Voigt, Reuss, Hill, Bulk, Shear and Young modulus, the Poisson
ratio, Pughs ratio, Kleinmans’s, ... parameters, and using the auxiliary
program Calparameter (it determines the invers of elastic constants). Using data
from the auxilliary programs fitdivELC and MassRho, anaIR elast lapw by us-
ing the auxiliary program Calparameter calculates the Sound Velocity, the Debye
temperature, Vickers hardness, Kleinmanss parameter and. The main out-
put file is case.output elastic which contains the elastic constants and elastic compli-
ance constants (invers of the elastic constants matrix) as well as mechanical and thermo-
dynamical properties. Finally, stabilityJAC will check elastic stability conditions and
ana elastorder lapw will check the sensitivity of the results to the order of the polyno-
mial fit (stored in file output-order). For monoclinic crystals, the TWS program trans-
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forms the elastic constants from WIEN2k to STANDARD Cartesian coordinates (stored in file
STDELC-matrix).

After a first run you may check your results using more datapoints (more or different displace-
ments). This can be done conveniently by setupc, which should be run in the corresponding
elast-constant/cXX/case directory. When you specify in addition to new datapoints also
your “old” displacements, these old results will be automatically taken into account in the analysis
without recalculating them.

On the other hand, when you want to change some computational parameters (RKmax, k-mesh,
XC-potential) you can call command init lapw after setupc and then modify your symm.job
file specifying “set answscf=no” and a modified “savename” (eg. pbe rkm8).

After these preparations, you can rerun symm.job and anaIR elast lapw and check if your
elastic constants are converged with respect to computational parameters.

This is only a brief introduction into IRelast. Additional information can be
found in $WIENROOT/SRC IRelast/guide and it is highly recommended to
read and follow the corresponding documents. You can also find 3 videos on
http://www.wien2k.at/reg user/unsupported/example-Mono-ZrO2-2022.mkv,
http://www.wien2k.at/reg user/unsupported/example-MgO-under-pressure-5GPa-2022.mkv
and http://www.wien2k.at/reg user/unsupported/bad-point-2022.mkv.

8.10 IRREP (Determine irreducible representations)

This program was contributed by:

	
Clas Persson
Condensed Matter Theory Group,Department of Physics,
University of Uppsala, Sweden
email: Clas.Persson@fys.uio.no

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program determines the irreducible representation for each eigenvalue and all your k-points.
It is in particular useful to analyse energy bands and their connectivity.

You need a valid vector file, but no other input is required. The output can be found in
case.outputir and case.irrep. For nonmagnetic SO calculations you must set IPR=1 in
case.inso.

The output of this program is needed when you want to draw bandstructures with connected lines
(instead of “dots”).

It will not work in cases of non-symmorphic spacegroups AND k-points at the surface of the BZ.
See also $WIENROOT/SRC irrep/README.

8.10.1 Execution

The program irrep is executed by invoking the command:

irrep [up/dn]irrep.def or x irrep [-so -up/dn -hf]

mailto:Clas.Persson@fys.uio.no
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8.10.2 Dimensioning parameters

The following parameters are listend in file param.inc:

LOMAX max. no. of local orbital. should be consistent with lapw1 and lapwso
NLOAT number of different types of LOs
MSTP max. step to describe k as a fraction
MAXDG max. no. of degenerate eigenfunctions
MAXIRDG max. no. of degenerate irr. representations
FLMAX size of flag (FL) array (should be 4)
MAXIR max. no. of irreducible representations
NSYM max. no. of symmetry operations
TOLDG min. energy deviation of degenerate states, in units of Rydberg

8.11 JOINT (Joint Density of States)

This program was contributed by:

	
Claudia Ambrosch-Draxl
Atomistic Modelling and Design of Materials
University Leoben
A-8700 Leoben, AUSTRIA
email: sol-office@physik.hu-berlin.de
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program carries out the BZ integration using the momentum matrix elements case.symmat
calculated before by optic. The interband or the intraband contributions to the imaginary part of
the dielectric tensor (ε2) can be computed. Alternatively, the DOS or the joint DOS can be derived.

The output in case.joint can be plotted with any xy-plotting package or opticplot lapw or
Curve lapw.

Warning: Negative values for ε2 may occur due to negative weights in Blöchl’s tetrahedron method.

For optional XMCD calculations (see OPTICS) an integration of the Brillouin zone is carried out
using the momentum matrix elements from case.symmat1up and case.symmat2up (if both edges
are present, otherwise only from case.symmat1up). The broadened and unbroadened spectra are
written in files case.xmcd and case.rawxmcd: in these files, the first column is the energy mesh, the
second and third columns the left and right polarized absorption spectra, the fourth column the
XMCD and the last is the XAS. For L2,3, M2,3, and M4,5 edges, the broadened and unbroadened
spectra for the single edges (useful for the application of Carra’s and Thole’s sum rules) are stored
in case.broad1 and case.broad2 and case.raw1 and case.raw2, respectively, where ”1” and ”2” are
refererred to the higher and lower energy core state.

8.11.1 Execution

The program joint is executed by invoking the command:

joint joint.def or x joint [-up|dn] [-hf]

mailto:sol-office@physik.hu-berlin.de
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8.11.2 Dimensioning parameters

The following parameter is listend in files param.inc:

NSYM order of point group
MG0 number of columns (usually 9)

8.11.3 Input

An example is given below:

---------------- top of file: case.injoint -----------------------
1 9999 8 : LOWER,UPPER,upper-valence BANDINDEX

-0.0000 0.00100 2.0000 : EMIN DE EMAX FOR ENERGYGRID IN ryd
eV : output units eV / ryd
XMCD : omitt these 4 lines for non-XMCD
-49.88 -50.80 : core energies in Ry (grep :2P case.scfc)
1.6 0.6 : core-hole broadening (eV) for both core states
0.1 : spectrometer broadening (eV)
4 : SWITCH
2 : NUMBER OF COLUMNS

0.1 0.1 0.3 : BROADENING (FOR DRUDE MODEL - switch 6,7)
------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format

b1, b2,
b3

lower, upper and (optional) upper-valence band-index (Setting b3 may
allow for additional analysis (restricting the occupied bands from b1-
b3) and in big cases it will reduce memory requirements. Otherwise set
b3 equal b2)

line 2: free format

emin,
de,
emax

Energy window and increment in Ry (emin must not be negative)

line 3: free format

units eV output in units of eV
Ry output in units of Ry

line 4: optional line for XMCD, must be omitted for ‘‘normal’’ optic; free for-
mat

XMCD keyword for XMCD calculation, requires 3 more lines

line 4xmcd: must be omitted for ‘‘normal’’ optic; free format

E core1,
E core2

lower and higher core energies (in Ry, get them using eg. “grep :2P
case.scf”)

line 4xmcd: must be omitted for ‘‘normal’’ optic; free format
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broad core1,
broad core2

lifetime broadening (eV) of lower and higher core state

line 4xmcd: must be omitted for ‘‘normal’’ optic; free format

broad spectrometer (Gaussian) broadening (eV)

line 4+: free format

switch 0 joint DOS for each band combination
1 joint DOS as sum over all band combinations
2 DOS for each band
3 DOS as sum over all bands
4 imaginary part of the dielectric tensor (ε2)
5 imaginary part of the dielectric tensor for each band combination
6 intraband contributions: number of “free“ electrons per unit cell as-

suming bare electron mass (calculated around EF ± 10 ∗ de as defined
in input line 4), plasma-frequency

7 in addition to switch 6 the contributions from different bands to the
plasma frequency are analyzed.

line 5: free format

ncol number of columns

line 6: free format
broadening

x,y,z broadening parameters (in units defined in line 3) for Drude-model

The band analysis for all options (switches 0, 2, 5, and 7) has been improved: For each tensor
component additional files are created, where each column contains the contributions from a single
band or band combination. The file names are e.g. .Im eps xx 1, .Im eps xx 2, or .jdos 1 etc.
where the number of files depend on the number of bands/band combinations.

Warning: The number of band combinations might be quite large!

8.12 KRAM (Kramers-Kronig transformation)

This program was contributed by:

	
Claudia Ambrosch-Draxl
Atomistic Modelling and Design of Materials
University Leoben
A-8700 Leoben, AUSTRIA
email: cad@unileoben.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

The Kramers-Kronig analysis is carried out for the actual number of columns contained in the
case.joint[up|dn] file. For each real component its imaginary counterpart is created and vice
versa. All dielectric tensor components can be found in file case.epsilon[up|dn]. The real and

mailto:cad@unileoben.ac.at
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imaginary parts of the optical conductivity (in 1015/s) are written to file case.sigmak[up|dn].
In addition, file case.absorp contains the real parts of the optical conductivity (in 1/(Ωcm) and
the absorption coefficients. The loss function is also calculated (case.eloss), where for the pre-
viously calculated Plasma-frequency the intraband contributions can be added.

Please note, that for spin-polarized calculations (without spin-orbit), the Kramers-Kronig anal-
ysis is NOT really additive, i.e. most quantities (like ε1) cannot be obtained by simply adding
the spin-up and dn results to get the total contribution (see equations in Ambrosch 06). Thus,
one should add up both spin contributions of ε2 (in case.jointup and case.jointdn) us-
ing addjoint-updn lapw (this will produce case.joint) before calling (non-spinpolarized) x
kram. (For a metal, the Plasma-frequencies (intraband transitions) for up and dn should be added,
but then divided by

√
2, before using x kram.)

The 3 sumrules are also checked and written to case.sumrules.

The output in case.epsilon[up|dn] and case.sigmak[up|dn] can be plotted with any xy-
plotting package, opticplot lapw or the ”OPTIC”-task in w2web.

8.12.1 Execution

The program kram is executed by invoking the command:

kram kram.def or x kram [-up|dn]

8.12.2 Dimensioning parameters

The following parameters are listed in files param.inc:

MAXDE maximum number of points in energy mesh
MPOL fixed at 6

8.12.3 Input

An example is given below:

---------------- top of file: case.inkram -----------------------
0.0 gamma for Lorentz broadening (in units selected in joint)
0.0 energy shift (scissors operator) (in units selected in joint)
1 add intraband contributions? yes/no: 1/0
12.60 plasma frequencies (for each ‘‘column’’ in case.injoint)
0.20 Gammas for Drude terms (for each ‘‘column’’ in case.injoint)

------------------- bottom of file -------------------------------

Interpretive comments on this file are as follows:

line 1: free format

EGAMM Lorentz broadening (in energy units selected in joint)

line 2: free format

ESHIFT Energy shift (scissors operator) (in energy units selected in joint)

line 3: free format
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INTRA 0 Intraband contributions are not added
1 Intraband contributions are added (requires plasma-frequencies calcu-

lated by joint using switch “6”) )

line 4: free format

EPL Plasma-frequencies (calculated by joint using SWITCH=6 for all
columns)

line 5: free format

EDRU Broadening for Drude terms (for all columns)

8.13 LAPW3 (X-ray structure factors)

This program calculates X-ray structure factors from the charge density by Fourier transformation.

You have to specify interactively valence or total charge density (because of the different normal-
ization of case.clmsum and case.clmval) and a maximum sinθ/λ value. In spin-polarized
cases you can calculate the structure factors for spin-up and dn and subtract them later for mag-
netic structure factors.

8.13.1 Execution

The program lapw3 is executed by invoking the command:

lapw3 lapw3.def or lapw3c lapw3.def or x lapw3 [-tot/-val -up/-dn ]

8.13.2 Dimensioning parameters

The following parameters are listend in file param.inc r or param.inc c :

LMAX2 highest L in in LM expansion of charge and potential
NCOM number of LM terms in density
NRAD number of radial mesh points

8.14 LAPW5 (electron density plots)

This program generates the charge density (or the potential) in a specified plane of the crystal
on a two dimensional grid which can be used for plotting with an external contour line pro-
gram of your choice. Depending on the input files one can generate valence (case.clmval)
or difference densities (i.e. crystalline minus superposed atomic densities) using the additional
file (case.sigma). In spinpolarized cases one can produce up-, dn- (switch -none) and to-
tal (-add) densities but also spin densities (difference up-dn, -sub). It is also possible to plot
the total density (case.clmsum, -tot), the kinetic-energy density (case.tausum, -tau) or the
Coulomb (case.vcoul, -coulomb), exchange-correlation (case.r2v, -exchange), vtau poten-
tial in scf mGGA (case.r2v2, -exchange2) and the total (case.vtotal, -pot) potential. The
file case.rho contains in the first line
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npx, npy, xlength, ylength;

and then the density (potential) written with:

write(21,11) ((charge(i,j),j=1,npy),i=1,npx)
11 format(5e16.8)

In order to get 3D-data for plotting with xcrysden, you should use the program 3ddens (see Sect.
8.15).

A recent extension by L.D. Marks allows to calculate STM images (constant current) according to
the Tersoff-Hamman approximation. Before doing this, you have to run lapw2 with a suitable en-
ergy window around the Fermi energy, which should correspond to the experimental bias voltage
(x lapw2 -all EMIN EMAX. The output contains the z-position (height) of the ”tip”, i.e. the po-
sition where the density has the specified value. A probably much faster alternative is to use the
program 3ddens (see Sect. 8.15).

In order to understand the full workflow for a meaningful valence electron density (or difference
density), it is strongly recommended that you use “Run Programs o Tasks o Electron density plots”
from w2web, see the TiC example in Fig.3.7 .

8.14.1 Execution

The program lapw5 is executed by invoking the command:

lapw5 lapw5.def or lapw5c lapw5.def or x lapw5 [-up|dn -val|-tot
-add|-sub|-none -pot|-coulomb|-exchange|-exchange2/-halfr2v|-tau
]

8.14.2 Dimensioning parameters

The following parameters are listend in file param.inc:

LMAX2 highest L in in LM expansion of charge and potential
NCOM number of LM terms in density
NRAD number of radial mesh points
NPT00 number of radial mesh points beyond RMT
NSYM order of point group

8.14.3 Input

An example is given below. You may want to use XCRYSDEN by T.Kokalj to generate this file (see
sect. 9.31.1).

---------------- top of file: case.in5 --------------------
0 0 0 1 # origin of plot: x,y,z,denominator
1 1 0 1 # x-end of plot
0 0 1 2 # y-end of plot
3 3 3 # x,y,z nshells (of unit cells)
100 100 # nx,ny
RHO # RHO/DIFF/OVER; ADD/SUB or blank, A4 format
ANG VAL NODEBUG # ANG/ATU, VAL/TOT, DEBUG/NODEBUG
NONORTHO # optional line: ORTHO|NONORTHO
STM 4.0D-5 3 # optional STM mode, density-level, axis (3=z-axis)
GAUSS # this and the following lines are for STM mode
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0.05 # vibrational smearing
SEMPER # optional output format for semper7 code
QUICK # optional, useful for a first crude check
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format

ix,iy,iz,idv The plane and section of the plot is specified by three points in the unit
cell, an origin of the plot, an x-end and an y-end. The first line specifies
the coordinates of the origin, where x=ix/idv, . . . in fractional units of
the lattice vectors (except fc, bc and c lattices, where the lattice vectors
of the conventional cell are used). Note the special meaning for STM
mode described below.

line 2: free format

ix,iy,iz,idv coordinates of x-end

line 3: free format

ix,iy,iz,idv coordinates of y-end (The two directions x and y must be orthogonal to
each other unless NONORTHO is selected). Since it is quite difficult to
specify those 3 points for a rhombohedral lattice, an auxiliary program
rhomb in5 is provided, which creates those points when you specify
3 atomic positions which will define your plane. The most convenient
way to specify this plane (for a more complex structure) is using XCrys-
Den, where you can simply click on 3 atoms which will span the plane.

line 4: free format

nxsh,
nysh,
nzsh

specifies the number of nearest neighbor cells (in x,y,z direction) where
atomic positions are generated (needs to be increased for very large plot
sections, otherwise some “atoms” are not found in the plot)

line 5: free format

npx,
npy

specifies number of grid points in plot. npy=1 produces a file
case.rho onedim containing the distance r (from the origin) and the
respective density, which can be used in a standard x-y plotting pro-
gram.

line 6: format (2a4)
switch, addsub

switch RHO charge (or potential) plots, no atomic density is used (regular case)
DIFF difference density plot (crystalline - superposed atomic densities),

needs file case.sigma (which is generated with LSTART, see section
6.4)

OVER superposition of atomic densities, needs file case.sigma
addsub NO (or blank field): use only the file from unit 9

ADD adds densities from units 9 and 11 (if present), e.g. to add spin-up and
down densities.
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SUB subtracts density of unit 11 (if present) from that of unit 9 (e.g. for the
spin-density, which is the difference between spin-up and down densi-
ties).

line 7: format (3a4)
iunits, cnorm, debug

iunits ATU density (potential) in atomic units e/a.u.3 (or Ry)
ANG density in e/Å3 (do not use this option for potentials)

cnorm determines normalization factor
VAL used for files case.clmval, r2v, vcoul, vtotal
TOT used for files case.clmsum, changed automatically when “-tot” is

used
debug DEBU debugging information is printed (large output)

line 8 (optional): free format

noorth1 ORTHO (default) enforces directions to be orthogonal
NONORT directions can be arbitrary; use this option only if your plotting pro-

gram supports non orthogonal plots (e.g. for XCRYSDENS).

line 9 (this line is optional): free format

PWONLY calculate the density also inside the spheres using the PW expansion
(“pseudodensity”, don’t expect that this has any physical meaning)

line 9 (this and the following lines are optional for the STM mode): free format
MODE, level, axis

MODE STM enables STM mode
level the density level (typically 104 − 105e−/Å3). If this value is inappro-

priately chosen, the code will terminate with a statement: ”Cannot
Bracket, sorry”.

axis the axis normal to the surface (e.g. 3 for z-axis). Note that in STM
mode the z-coordinate specified in the first 3 lines is used as a starting
value for the search of the z-position where the density has the value
of ”level”. This starting z-value has to be in the interstitial (vacuum)
region.

line 10: free format
VIBR

GAUSS Gaussian smearing
DAMP
LAPL

damped Gaussian smearing

DAMP
LAP2

alternate damped Gaussian smearing

DAMP
BESS

alternate damped Gaussian smearing

line 11: free format (only for GAUSS or DAMP modes)

ANIS for exp(-x*x/Anis(1) damping (in Å)
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line 12 (optional): free format

SEMPER this keyword puts the output in a format readable by the semper7 code
(exchange of x,y order).

line 13 (optional): free format

QUICK this keyword performs a fast approximate calculation for checking if
your input (in particular the density level) is reasonable.

8.15 3DDENS (3D electron density plots in whole cell)

This program generates the charge density (or the potential) in the whole conventional (or primi-
tive) unit cell on a three dimensional grid which can be used for plotting with an external program
that can read .xsf-files (e.g., XCrysden, VESTA). Depending on the input files one can generate va-
lence (case.clmval, switch -val) or total densities (case.clmsum, switch -tot) and 3ddens
supports the same switches as lapw5 (see 8.14). Optionally one can simulate a constant current
STM image, where a height profile (above a surface slab) corresponding to a specific electron den-
sity value can be extracted from the case.xsf-file and written to the case stm.xsf-file.

8.15.1 Execution

The program 3ddens is executed by invoking the command:

3ddens 3ddens.def or x 3ddens [-val|-tot -up|-dn|-none
-tau|-pot|-coulomb|-exchange|-exchange2]

8.15.2 Dimensioning parameters

The following parameters are listend in file param.inc:

LMAX2 highest L in in LM expansion of charge and potential
NCOM number of LM terms in density
NRAD number of radial mesh points

8.15.3 Input

An example is given below. You can find this template in
$WIENROOT/SRC templates/case.in3d.

---------------- top of file: case.in3d --------------------
100 100 100 # number of 3D-gridpoints in a-, b- and c-direction
0.0 0.0 # extend (pos.)/reduce (neg.) ploting grid by some fraction of the lattice vectors
0.0 0.0 # 2nd line: a-direction, 3rd line: b-direction, 4th line: c-direction
0.0 0.0 # all values set to 0.0: use full unit cell
add # no: use file 9; add: sum of files 9 and 11; sub: difference of 9 and 11
conv # calculate density in conventional (conv) or primitive (prim) cell
stm z 60 100 0.0001 # (optional) stmswitch, direction, start, end, density
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
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ix,iy,iz The number of gridpoints along a-, b-, and c-direction used for the cal-
culation (the direction is given by the lattice vectors of the used cell).

line 2-4: free format

ix,iy Extension (positive values) or reduction (negative values) of the plot-
ting grid - given is the percentage of the change with respect to the
gridpoints of line 1
Line 2: Extension/reduction in -a and a direction.
Line 3: Extension/reduction in -b and b direction.
Line 4: Extension/reduction in -c and c direction.

line 5: free format

addsub no (or blank field): use only the file from unit 9
add adds densities from units 9 and 11 (if present), e.g. to add spin-up and

down densities.
sub subtracts density of unit 11 (if present) from that of unit 9 (e.g. for the

spin-density, which is the difference between spin-up and down densi-
ties).

line 6: free format

celltype conv calculates the electron density in the conventional unit cell (default).
prim calculates the electron density in the primitive cell.

line 7 (optional): free format
stmswitch, direction, start, end, density

stmswitchstm case stm.xsf file is written, containing height values for the given den-
sity value.

direction x | y |
z

specifies the direction perpendicular to the considered surface.

start specifies the first plane for the search of the given density (typically a
value above the surface atom).

end specifies the last plane for the search of the given density (typically
around middle of vacuum).

density density that corresponds to the desired constant current (∼ 0.0001 to
0.00001).
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8.16 LAPW7 (wave functions on grids / plotting)

This program was contributed by:

	

Uwe Birkenheuer
Max-Planck-Institut für Physik komplexer Systeme
Nöthnitzer Str. 38, D-01187 Dresden, Germany
email: birken@mpipks-dresden.mpg.de
and
Birgit Adolph,
University of Toronto, T.O., Canada

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

The program lapw7 generates wave function data on spatial grids for a given set of k-points and
electronic bands. lapw7 uses the wave function information stored in case.vector (or in re-
duced (filtered) form in case.vectorf which can be obtained from case.vector by running
the program filtvec). Depending on the options set in the input file case.in7(c) one can
generate the real or imaginary part of the wave functions, it’s modulus (absolute value) or argu-
ment, or the complex wave function itself. For scalar-relativistic calculations both the large and
the small component of the wave functions can be generated (only one at a time). The wave func-
tions are generated on a grid which is to be specified in the input file(s). The grid can either be
any arbitrary list of points (to be specified free-formatted in a separate file case.grid) or any
n-dimensional grid (n = 0...3). The operating mode and grid parameters are specified in the input
file case.in7(c). As output lapw7 writes the specified wave function data for further process-
ing – e.g. for plotting the wave functions with some graphical tools such as gnuplot – in raw
format to case.psink. For quick inspection, a subset of this data is echoed to the standard out-
put file case.outputf (the amount of data can be controlled in the input). In case, lapw7 is
called many times for one and the same wave function, program overhead can be reduced, by first
storing the atomic augmentation coefficients Alm, Blm (and Clm) to a binary file case.abc. For
the spin-polarized case two different calculations have to be performed using either the spin-up or
the spin-down wave function data as input.

It should be easy to run lapw7 in parallel mode, and/or to apply it to wave function data obtained
by a spin-orbit interaction calculation. None of these options have been implemented so far. Also,
lapw7 has not yet been adapted for w2web.

8.16.1 Execution

The program lapw7 is executed by invoking the command:

lapw7 lapw7.def or lapw7c lapw7.def or x lapw7 [-c] [-up|dn] [-sel]
[-so] [-hf]

With the -sel option lapw7 expects data from the reduced (filtered) wave function file
case.vectorf, otherwise the standard wave function file case.vector is used. The reduced
vector file case.vectorf is assumed to resist in the current working directory, while the stan-
dard vector file case.vector (which may become quite large) is looked for in the WIEN scratch
directory. For details see lapw7.def.

mailto:birken@mpipks-dresden.mpg.de
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8.16.2 Dimensioning parameters

The following parameters are listed in file param.inc (r/c):

NRAD number of radial mesh points
NSYM order of point group
LMAX7 maximum L value used for plane wave augmentation
LOMAX maximum L value used for local orbitals

The meaning of LMAX7 is the same as that of LMAX2 in lapw2 and that of LMAX-1 in lapw1. Rather
than being an upper bound it directly defines the number of augmentation functions to be used.
It may be set different to LMAX2 in lapw2 or LMAX-1 in lapw1, but it must not exceed the latter
one. Note that, the degree of continuity of the wave functions across the boundary of the muffin
tin sphere is quite sensitive to the choice of the parameter LMAX7. A value of 8 for LMAX7 turned
out to be a good compromise.

8.16.3 Input

A sample input is given below. It shows how to plot a set of wave functions on a 2-dim. grid.

------------------- top of file ------------------------
2D ORTHO # mode O(RTHOGONAL)|N(ON-ORTHOGONAL)
0 0 0 2 # x, y, z, divisor of origin
3 3 0 2 # x, y, z, divisor of x-end
0 0 3 2 # x, y, z, divisor of y-end
141 101 35 25 # grid points and echo increments
NO # DEP(HASING)|NO (POST-PROCESSING)
RE ANG LARGE # switch ANG|ATU|AU LARGE|SMALL
1 0 # k-point, band index
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows.

line 1: A3,A1
mode flag

mode the type of grid to be used
ANY An arbitrary list of grid points is used

0D,1D,2D or 3D An n-dim. grid of points is used. n = 0, 1, 2, or 3.
flag orthogonality checking flag (for n-dim. grids only)

N The axes of the n-dim. grid are allowed to be non-orthogonal.
O or
〈blank〉

The axes of the n-dim. grid have to be mutual orthogonal.

line 2: free format — (for n-dim. grids only)
ix iy iz idiv

Coordinates of origin of the grid, where x=ix/idv etc. in units of the
conventional lattice vectors.

line 3: free format — (for n-dim. grids with n > 0 only)
ix iy iz idiv

Coordinates of the end points of each grid axis. This input line has to
be repeated n-times.

line 4: free format — (not for 0-dim. grids)
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np ...
npo ...

In case of an n-dim. grid, first the number of grid points along each axis,
and then the increments for the output echo for each axis. Zero incre-
ments means that only the first and last point on each axis are taken. In
case of an arbitrary list of grid points, the total number of grid points
and the increment for the output echo. Again a zero increments means
that only the first and last grid point are taken. Hence, for n-dim. grids,
altogether, 2 ∗ n integers must be provided; for arbitrary lists of grid
points two intergers are expected.

line 5: format(A3)

tool post-processing of the wave functions
DEP Each wave function is multiplied by a complex phase factor to align

it (as most as possible) along the real axis (the so-called DEP(hasing)
option).

NO No post-processing is applied to the wave functions.

line 6: format(A3,1X,A3,1X,A5)
switch iunit whpsi

switch the type of wave function data to generate
RE The real part of the wave functions is evaluated.
IM The imaginary part of the wave functions is evaluated.
ABS The absolute value of the wave functions is evaluated.
ARG The argument the wave functions in the complex plane is evaluated.
PSI The complex wave functions are evaluated.

iunit the physical units for wave function output
ANG Å units are used for the wave functions.
AU or
ATU

Atomic units are used for the wave functions.

whpsi the relativistic component to be evaluated
LARGE The large relativistic component of wave function is evaluated.
SMALL The small relativistic component of wave function is evaluated.

line 7: free format
iskpt iseig

iskpt The k-points for which wave functions are to be evaluated. Even if the
wave function information is read from case.vectorf, iskpt refers to
the index of the k-point in the original case.vector file! If iskpt is set
to zero, all k-points in case.vector(f) are considered.

iseig The band index for which wave functions are to be evaluated. Even
if the wave function information is read from case.vectorf, iseig
refers to the band index in the original case.vector file! If iseig is
set to zero, all bands (for the selected k-point(s)) which can found in
case.vector(f) are considered.

line 8: format(A4) — this line is optional

handle augmentation coefficient control flag
SAVE
or
STOR(E)

Augmentation coefficients are stored in case.abc). No wave function
data is generated in this case. This option is only allowed if a single
wave function is selected in the previous input line.



202 CHAPTER 8. ANALYSIS, PROPERTIES AND OPTIMIZATION

READ
or RE-
PLOT

Previously stored augmentation coefficients are read in (from
case.abc). This option is only allowed if the same single wave func-
tion as the one who’s augmentation coefficients are stored in case.abc
is selected in the previous input line.

anything
else

Augmentation coefficients are generated from the wave function infor-
mation in case.vector(f).

8.17 MINI (Geometry minimization)

This program is usually called from the script min lapw and performs movements of the
atomic positions according to the calculated forces (please read Sec. 5.3.2). It generates a new
case.struct file which can be used in the next geometry/time step. Depending on the input op-
tions, mini helps to find the equilibrium positions of the atoms or performs a molecular dynamics
simulation (which might take very long time).

For finding the equilibrium positions different methods are available. We recommend PORT, a
“reverse-communication trust-region Quasi-Newton method” from the Port library [Gay, 1983],
which was implemented by L.D.Marks (L-marks@northwestern.edu, http://www.numis.
northwestern.edu). It minimizes the total energy and NOT the forces (using the forces as
derivative of E vs. atomic positions). In cases when energy and forces are not ”compatible”, eg. be-
cause of numerical noise due to limited scf convergence, small RKmax or crude k-mesh, PORT may
fail. An interesting alternative is a sophisticated modified steepest-descent method (NEW1), which
minimizes the forces (does not use the total energy). Eventually a damped Newton dynamics is
also available.

The forces are read from a file case.finM, while the “history” of the geometry optimization or
MD is stored in case.tmpM

One can constrain individual positions in case.inM or define linear constrains for several po-
sitions using case.constraint (thanks to B.Yanchitsky (Kiev, yan@imag.kiev.ua); for details
see comments in the SRC templates/template.constraint file). In case of calculations with linear
constrains one should use NEW1 (in case.inM). When constraining individual positions and us-
ing PORT, one should after modifications in case.inM rerun x pairhess -copy (which copies
.minpair to .minrestart and .min hess).

8.17.1 Execution

The program mini is executed by invoking the command:

mini mini.def or x mini

8.17.2 Dimensioning parameters

The following dimensioning parameters are collected in the file param.inc:

MAXIT maximum number of geometry steps
NRAD number of radial mesh points
NCOM number of LM terms in density
NNN number of neighboring atoms for nn
NSYM order of pointgroup

mailto:L-marks@northwestern.edu
http://www.numis.northwestern.edu
http://www.numis.northwestern.edu
mailto:yan@imag.kiev.ua
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8.17.3 Input

Two examples are given below; one for a PORT geometry optimization, and one for molecular
dynamics using a NOSE thermostat:

Input for geometry optimization:

---------------- top of file: xxx.inM --------------------
PORT 2.0 0.25 2.0 (PORT/NEWT tolf step0 (a4,2f5.2))
1.0 1.0 1.0 3.0 ( 1..3:delta, 4:BO/eta(1=friction zero))
1.0 1.0 1.0 6.0 ( 1..3=0 constraint)
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows.

line 1: format(a4,2f5.2)

MINMOD Modus of the calculation
PORT Geometry optimization with reverse-communication trust-region

Quasi-Newton routine from the Port library. Recommended option.
NEW1 Performs geometry optimization with ”sophisticated” steepest-descent

method with automatic adaptation of stepsize (still experimental, but
when PORT fails, an interesting alternative)

NEWT Performs geometry optimization with damped Newton scheme accord-
ing to
Rτ+1
m = Rτm + ηm(Rτm −Rτ−1m ) + δmF

τ
m

whereRτm and F τm are the coordinate and force at time step τ . When the
force has changed its direction from the last to the present timestep (or
is within the tolerance TOLF), ηm will be set to 1 − ηm. Please see also
the comments in Sect. 5.3.2

BFGS Performs geometry optimization with the variable metric method of
BFGS. This option works only when a quadratic approximation is a
good approximation to the specific potential surface. Obsolete.

TOLF Force tolerance, geometry optimization will stop when all forces are
below TOLF.

STEP0 Initial ”Trust-region radius”. Determines size of first geometry step.
TOLP (active only in -MRS1a mode of mixer). Position tolerance, geometry

optimization will stop when all atomic movements are below TOLP.

line 2: free format

DELTA(1-
3)

For PORT (and BFGS): Precondition parameters: rescales the gradient
and thus determines the size of the geometry steps
For NEWT/NEW1: x,y,z-delta parameters. Determines speed of mo-
tion. Good values must be found for each individual system. They de-
pend on the atomic mass, the vibrational frequencies and the starting
point (see Sect. 5.3.2).
DELTA(i) = 0 constrains the corresponding i-th coordinate (for PORT:
after setting a DELTA(i)=0, also rerun pairhess to set a proper Hessian).
The delta-x,y,z correspond to the global coordinates (the same as the
positions in case.struct and the forces :FGL from case.scf).
Whenever you change these DELTA(i) you must remove file case.tmpM !

ETA For NEWT: damping (friction) parameter. ETA=1 means no friction,
ETA=0 means no speed from previous time steps
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PORT: changes the strength of the bonds when running pairhess and
ZWEIGHT is negative (see the pairhess description), otherwise not
used
NEW1: ETA is not used

>>> line 2: must be repeated for every atom

Input for Molecular dynamics:

---------------- top of file: nbc.inM --------------------
NOSE (NOSE/MOLD (a4))
58.9332 400. 1273. 5.0 (Masse, delta t, T, nose-frequency)
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
58.9332 400. 1273. 5.0
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows.

line 1: format(a4,f5.2)

MINMOD Modus of the calculation
MOLD Performs next molecular dynamics timestep
NOSE Performs next molecular dynamics timestep using a NOSE thermostat

line 2: free format

MASS Atomic mass of ith atom
TIMESTEP Time step of MD (in atomic units, depends on highest vibrational fre-

quencies)

TEMP Simulation Temperature (K)

NOSF Nose-frequency

>>>line 2: must be repeated for every atom

8.18 MSTAR (effective masses)

This program was contributed by:

	
Oleg Rubel
rubelo@mcmaster.ca
see M.Rubel et al., Computer Physics Communications 261 (2021) 107648
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.
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This program calculates effective masses using a perturbative k.p approach. The formalism
and its usage is decribed in detail in [Rubel et al., 2021]. It uses the momentum matrix el-
ements (case.mommat2) from program optic (use a large Emax and ”ON” in case.inop)
and generates 4 files (minv ij.dat, minv pr.dat, minv c.dat, and minv d.dat, see
[Rubel et al., 2021] for details).

One can reformat minv c.dat into a WIEN2k-”qtl”-format using x mstarqtl, which can then
be used in spaghetti to indicate the masses in a band structure plot.

8.18.1 Execution

The program mstar can be called only after optic and is executed by invoking the command:

x mstar [-up/-dn -settol 1.d-5] or
mstar case.mommat2 1.d-5

8.19 NMR (chemical shielding)

This program was contributed by:

	
Robert Laskowski
Inst.Materials Chemistry
TU Vienna
A-1060 Vienna, AUSTRIA
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program calculates the orbital contribution to the NMR (chemical) shielding (the total shield-
ing for insulators). It will first calculate the perturbation of the wave functions due to the
magnetic field (first order perturbation theory) and the resulting current. This induced cur-
rent is then integrated (via the Biot-Savart law) to obtain the magnetic shielding at a nucleus.
For details see [Laskowski and Blaha, 2012a, Laskowski and Blaha, 2012b, Laskowski et al., 2013,
Laskowski and Blaha, 2014].

The program does not need to be called by the user, but it is interfaced with the script x nmr lapw
(all details can be found in sect. 5.6), where the different modes/options can be selected as switches.
It can run in k-point as well as in mpi-parallel mode.

It does not have its own input file, but a modified case.in1 is necessary, which needs to be
generated by x nmr lapw -mode in1. We need an extended basis set with several local orbitals
(up to very high energies) for all ′′l + 1′′ states, where ′′l′′ refers to the maximal “chemical l” of the
specific atom (l=1 for C, but 2 for Fe, ..). In addition ALL eigenvalues must be calculated, which
increases the cpu-time of lapw1 as compared to a normal scf-calculation. In addition lapw1/2 and
nmr is run for 7 different k-meshes, an unshifted one as well as plus/minus shifted meshes in x, y
and z direction.
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8.20 OPTIC (calculating optical properties)

This program was contributed by:

	
Claudia Ambrosch-Draxl
Atomistic Modelling and Design of Materials
University Leoben
A-8700 Leoben, AUSTRIA
email: cad@unileoben.ac.at
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

The theoretical background is described in detail in [Abt et al., 1994] and
[Ambrosch-Draxl and Sofo, 2006] (Please cite the latter when publishing optics results!). The
calculation of optical properties requires a dense mesh of eigenvalues and the corresponding
eigenvectors. For that purpose start kgen and generate a fine k-mesh (with many k-points). Run
lapw1 and then lapw2 with the option FERMI (Note: You must also put TETRA / with value=101.
for metallic systems case.in2) in order to generate the weight-file. After the vector-file has been
generated by lapw1 run optic in order to produce the momentum matrix elements. Then the
program joint carries out the BZ integration and computes the imaginary part of the complex
dielectric tensor. In order to obtain the real part of the dielectric tensor kram may be executed
which uses the Kramers-Kronig relations.

The program optic generates the symmetrized squared momentum matrix elements

Mi =< n′~k|~p.~ei| n~k >2

between all band combinations for each k-point given in the vector-file and stores them in
case.symmat. For the orthogonal lattices the squared diagonal components can be found in the
file case.mat diag. For non-orthogonal systems all 6 components (Mj)

∗Mk can be calculated
according to the symmetry of the crystal. In systems without inversion symmetry the complex
version opticc will be executed.

The matrix elements (and the imaginary part of the dielectric tensor) are given per spin in case
of the spin-polarized calculation and as a sum of both spin directions if the calculation is non-
spinpolarized.

Due to spin-orbit coupling imaginary parts of the nondiagonal elements may occur in spinpolar-
ized cases. Thus in general, up to 9 components can be calculated at the same time.

Since version WIEN2k 11.1 an option for the calculation of XMCD (X-ray magnetic circular dichro-
ism) has been added by Lorenzo Pardini (loren.pard@gmail.com). Please cite [Pardini et al., 2012]
when using XMCD and check the paper for further details. In the case of the XMCD calcu-
lation, the momentum matrix elements in the dipole approximation between the selected core
state and conduction states are stored in case.symmat1up (higher energy core state, eg. L3) and
case.symmat2up (lower energy core state, eg. L1) for each k-point and every band. For K, L1, and
M1 edges, only case.symmat1up is written, since in these cases there is only one edge, whereas
both case.symmat1up and case.symmat2up are written for the remaining cases.
XMCD calculation can be only performed for system with spin-polarized AND spin-orbit set
up.
In order to calculate XMCD and x-ray absorption spectra, eigenvalues must be evaluated over a
mesh in the whole Brillouin zone; for that porpouse, the following procedure should be followed:

I generate a k-mesh in the whole Brilouin zone (x kgen -fbz);

mailto:cad@unileoben.ac.at
mailto:loren.pard@gmail.com
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I change TOT to FERMI in case.in2c;
I set IPRINT=1 in case.inc to activate core-wavefunction output;
I for metallic systems, put TETRA with value 101;
I execute x lapw1 -up / -dn;
I execute x lapwso -up;
I execute x lapw2 -fermi -so -up / -dn;
I execute x lcore -up / -dn;
I run optic: x optic -so -up;
I run joint: x joint -up.

You must not use p-1/2 “relativistic” LOs in LAPWSO and no HDLOs in lapw1, since this basis is not
supported on OPTICS yet. However, you can use multiple LOs (high-energy LOs) provided you do not use
the XMCD option.

Note that OPTICS should not be used with the hybrid functionals (see Sec. 4.5.9), since the full expression
for the momentum matrix elements is not implemented yet and the matrix elements are incomplete.

8.20.1 Execution

The program optic is executed by invoking the command:

optic(c) optic.def or x optic [-c -up|dn -so -p -scratch dir]

optic is parallelized with OpenMP and over k-points.

Recommended procedure for spin-orbit coupling:

In order to get the correct matrix elements, the files case.vectorso[up|dn] have to be used.
For that purpose the following procedure is recommended:

I run SCF cycle: run[sp] lapw -so
I generate a fine k-mesh for the optics part: x kgen [-so]
I execute run[sp] lapw -so -s lapw1 -e lcore with this fine k-mesh
I run optic: x optic -so [-up]
I run joint: x joint [-up]
I run kram: x kram [-up]

In cases of non-spinpolarized spin-orbit calculations WITHOUT inversion symmetry one must do
some tricks and “mimick” a spinpolarized calculation:

I cp case.vsp case.vspup
I cp case.vsp case.vspdn
I cp case.vectorso case.vectorsoup
I cp case.energyso case.energysoup
I x lapw2 -fermi -so -up
I x optic -so -up
I x joint -up

Note: In spin-polarized cases with spin-orbit only one call to optic, joint and/or kram (either up or
down) is necessary, since the spins are not independent any more and both vector-files are used at the same
time.
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8.20.2 Dimensioning parameters

The following dimensioning parameters (listed in param.inc r and param.inc c) are used:

LMAX highest l+1 in basis function inside sphere (reducing LMAX to 4 or 5 may dra-
matically speed-up optics for large cases, but of course the matrix elements will
be truncated and do not have full precision)

LOMAX highest l for local orbital basis (consistent with input in case.in1)
NRAD number of radial mesh points
NSYM order of point group

8.20.3 Input

An example is given below:

---------------- top of file: case.inop --------------------
99999 1 : NKMAX, NKFIRST
-5.0 2.0 18 : EMIN, EMAX, NBvalMAX
XMCD 1 L23 : optional line: for XMCD of 1st atom and L23 spectrum
2 : number of choices (columns in *symmat)
1 : Re xx
3 : Re zz
OFF : ON/OFF writes MME to unit 4
------------------- bottom of file -------------------------

Interpretive comments on this file are as follows:

line 1: free format

nkmax,
nkfirst

maximal number of k-points , number of k-point to start calculation

line 2: free format

emin,
emax

absolute energy range (Ry) for which matrix elements should be calcu-
lated

nbvalmax optional input. Setting this to the number of occupied bands (see
case.output2) will reduce cpu-time of optics (for large cases, MM only
between occupied and empty bands)

line 3: optional line, must be omitted for ‘‘normal’’ optic; free format

XMCD fixed keyword to indicate XMCD calculation. You should also use
NCOL=6

natom atom number (from case.struct file) for which XMCD should be
calculated

edge specify the edge: must be K, L1, L23, M1, M23 or M45

line 3+: free format

ncol number of choices (columns in case.symmat)

line 4+: free format

icol column to select. Choices are:
1 . . . Re < x >< x >
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2 . . . Re < y >< y >
3 . . . Re < z >< z >
4 . . . Re < x >< y >
5 . . . Re < x >< z >
6 . . . Re < y >< z >
7 . . . Im < x >< y >
8 . . . Im < x >< z >
9 . . . Im < y >< z >
Options 7-9 apply only in presence of SO, options 4-6 only in non-
orthogonal cases.

line 5: free format
IMME, NATOMS (optional input)

IMME OFF/ON; optionally prints unsquared momentum matrix elements to
unit 4

NATOMS number of atoms for which the opt. matrix elements should be calcu-
lated (The index of the atoms is read in the next line). Please note, that
since we need the squared matrix elements, the sum of ε2 using atom
“1” and atom “2” separately is NOT the same as using atom “1 and
2” together, since we miss crossterms. Nevertheless this can be a use-
ful option to analyze the origin of certain peaks in ε2. I recommend to
repeat this analysis for all possible combinations, and also for a list of
“all” atoms, since this shows the effect of the interstitial (and crossterms
involving the interstitial).

line 6: (optional) free format

IATOMS List of NATOMS atoms for which the opt. matrix elements should be
calculated (see above).

8.21 OPTIMIZE (Volume, c/a or 2-4 dimensional lattice parameter
optimization)

This program generates a series of new struct files corresponding to different volumes, c/a ratios,
or otherwise different lattice parameters (depending on your input choice) from an existing struct
file (either case initial.struct or case.struct). (When case initial.struct is not
present, it will be generated from the original case.struct.

Furthermore it produces a shell script optimize.job. You may modify this script and execute it.
Further analysis of the results (at present only equilibrium volume or c/a ratio are supported in
w2web) allows to find the corresponding equillibrium parameters (see Sec.5.3.1).

8.21.1 Execution

The program optimize is executed by invoking the command:

optimize optimize.def or x optimize
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8.21.2 Input

You have to specify interactively which task should be performed (volume, c/a, b/a optimization,
or full optimization for tetragonal, orthorhombic or monoclinic structure), how many cases you
want to do and how large the change (+/- xx %) should be for each case.

8.22 PES (Calculate valence-band photo-electron spectra)

This program was contributed by:

	
Mahdiyar Bagheri
Inst. for Materials Chemistry, TU Vienna, Austria
email: mahdiyar4@gmail.com

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

This program calculates the valence-band photo-electron spectrum (PES) according to
[Bagheri and Blaha, 2019]. The program pes takes the calculated partial Density of States
and multiplies them with the corresponding atomic cross-sections [Yeh and Lindau, 1985,
Trzhaskovskaya et al., 2001, Trzhaskovskaya et al., 2006] to generate the PES spectrum. It takes
into account the multiplicity of the different atomic sites and allows to normalize the PES spec-
tra according to the amount of the corresponding partial charge of the free atom inside its atomic
spheres and thus takes the localization/delocalization of wave functions into account.

8.22.1 Execution

The program pes requires case.struct, case.outputst, case.int and the partial density of
states case.dos1ev, case.dos2ev, ... as input.

You need to generate the partial DOS for ALL atoms and ALL relevant “chemical angular mo-
menta” (eg. C-s and C-p; or Ti-s and Ti-d) using the tetra program. Sometimes it is necessary
to include also orbitals which are not occupied in free atoms (like Ti-4p). The program will allow
you to estimate cross sections for these states using the information of neighboring atoms. Some-
times you will need to change the orbitals interactively, since the “essential” atomic orbital might
be different (like the high-lying semicore Na-2s,2p states and not Na-3s,3p, which are empty in
ionic solids).

The program pes is executed by invoking the command:

x pes [-up | -dn] or pes pes.def

You are asked interactively for a couple of inputs:

I specify an X-ray excitation energy (since the atomic cross-sections are energy dependent and
the results can differ significantly for different excitation energies). Experimental spectra are
often measured using Al-Kα (1486.6 eV) or Mg-Kα (1253.6 eV) radiation when performed in
a lab, otherwise synchrotron radiation of a certain energy can be used.

I optionally reconfigure the relevant atomic orbitals (like Na-2p instead of 3p as mentioned
above). An editor is opened in this case.

mailto:mahdiyar4@gmail.com
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I which cross section database to use (usually Trzhaskovskaya etal
[Trzhaskovskaya et al., 2001, Trzhaskovskaya et al., 2006] is the recommended choice,
except for UPS at very low energy.

I for the (default) Trzhaskovskaya database you can also specify a specific polarization (see
[Bagheri and Blaha, 2019]).

I If no atomic cross section is available (eg. for Zn-4p), you can extrapolate it from neighboring
atoms (Ga, Ge) and estimate it yourself. An editor is opened in this case.

I use (recommended) or do not use the renormalization of the partial DOS by the inverse of
the fractional charge inside the atomic spheres.

I optionally optimize the fractional charges such that the sum of the partial DOS comes close
to the total DOS (to account for the missing interstitial). In this case, also a renormalized DOS
file (case.dosrn1ev) is created (and can be plotted dosplot2 lapw -ren).

The summary is written into case.outputpes, while the total PES spectrum as well as its par-
tial contributions are in case.pes1/2/.. (see header of these files). The format of these files
is identical to the corresponding dos-files, such that they can be plotted using dosplot2 lapw
-pes.

8.23 QTL (calculates special partial charges and population ma-
trices)

This program was contributed by:

	
P. Novák and J.Kuneš
Inst. of Physics, Acad.Science, Prague, Czeck Republic
email: novakp@fzu.cz

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

qtl creates the input for calculating total and projected density of states of selected atoms (with a
limit of 28 different atoms) and selected l-subshells. It thus provides similar data as lapw2 -qtl, but
it allows for additional options. In particular it supports calculation of DOS projected on relativistic
states p1/2, p3/2, d3/2, d5/2, f5/2, f7/2, DOS projected on states in a rotated coordinate system and
DOS projected on individual f states. qtl also allows to calculate population matrix and energy
resolved population matrix. Comparing to lapwdm population matrix, the matrix created by qtl
may contain also the cross terms between different orbital and spin numbers and it can be energy
resolved. Important option of the qtl is the symmetrization that makes the calculation longer, but
must be switched on whenever the quantities, which are not invariant are calculated. Detailed
description may be found in QTL - technical report by P. Novák. The calculation is based on the
spectral decomposition of a density matrix on a given atomic site and its transformation to the
required basis.

The output is written to case.qtl [up/dn]. For the DOS calculation the file case.qtltext [up/dn]
is created in which the ordering of partial charges is given. Please note, that in contrast to case.qtl
[up/dn] from x lapw2 -qtl the total partial charge of an atom is NOT multiplied with its “multiplicity”
and contains only the sum of the requested l,m terms (eg. s,p,d) and thus not all contributions. Also the
interstital charge will usually be NOT correct.

mailto:novakp@fzu.cz
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8.23.1 Execution

The program qtl is executed by invoking the command:

x qtl [ -up/dn -so -p -hf] or
qtl qtl.def

8.23.2 Input

A sample input (a default is created automatically during init lapw for case.inq is given be-
low.

------------------ top of file: case.inq --------------------
-7. 2. Emin Emax
2 number of selected atoms
1 2 0 0 iatom1 qsplit1 symmetrize loro
2 1 2 nL1 p d
3 3 1 1 iatom2 qsplit2 symmetrize loro
4 0 1 2 3 nL2 s p d f
1. 1. 1. new axis z
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
emin,emax energy window

line 2: free format
natom number of atoms selected for calculation (max. 28,

if more are needed you have to run qtl in “junks”)

line 3: free format
iatom, QSPLIT, symmetrize, loro
iatom integer, index of atom
QSPLIT integer, analog of ISPLIT in case.struct: see below
symmetrize integer, =0 (no symmetrization), 1 (symmetrization)
loro integer =0 original coord. system preserved

=1 (new z axis)
=2 (new z and x axes)

line 4: free format
Nl(iatom), (l(iatom,i),i=1,Nl(iatom))
Nl number of orbital numbers selected for calculation
l orbital numbers selected for calculation for atom iatom

line 5: free format
hz, kz, lz real*8, direction of new axis z (if loro=1,2)

Lines starting from line 3 are repeated for each selected atom. Line 5 only appears when calculation
in new coordinate system is required (loro 6= 0). Axis z in this system is along hz,kz,lz (in units of
the lattice vectors, need not be normalized). If not only the z axis, but also the x axis need to be
specified, then loro must be equal to 2 and additional line

hx, kx, lx (real*8)

giving the direction of the new axis x, perpendicular to the new axis z must appear. For relativistic
splitting (QSPLIT=0,-1) this rotation is ignored and z points along the direction of magnetization
as defined in case.inso.
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Table 8.100: Possible values of QSPLIT and their interpretation
QSPLIT meaning

-2 DOS in basis according to ISPLIT from case.struct
-1 DOS in relativistic |j, l, s,mj > basis
0 DOS in relativistic |j, l, s,mj > basis, summed over mj

1 DOS in |l,ml > basis (no symmetry)
2 DOS in basis of real orbitals (no symmetry)
3 axial symmetry
4 hexagonal symmetry
5 cubic symmetry
6 user written unitary transformation

88 population matrix, no < l|l′ > crossterms corresponds to ISPLIT=88
99 full population matrix including < l|l′ > crossterms (as ISPLIT=99)

Indices of selected atoms, as well as the orbital numbers, must form an ascending sequence.

For QSPLIT=6 (unitary transformation prepared by user) the unitary matrices are read as in
WIEN2k 07 qtl: For the i-th atom selected for qtl calculation, they are stored in case.cf$i and
ordered according to increasing l. The unitary transformation matrix must rotate from the stan-
dard lms-basis to the desired one. A few examples (e.g. jjz , lms, or eg − t2g) are supplied with the
code in $WIENROOT/SRC templates/template.cf * and must be copied to case.cf$i . For
less common cases these must be generated by hand.

8.23.3 Output

The results in file case.qtl[up/dn] are written in the same format as lapw2 file case.qtl[up/dn] and
thus they may be directly used by tetra.

The data for the interstital DOS correspond to n = nat + 1 (nat is number of atom types). The
ordering of densities for all selected atoms is summarized in the file case.qtltext[up/dn]. The qtltext
file that corresponds to the input data given above is:

Ordering of DOS in QTL file for: HoMnO3 (Munoz)

atom 1 ordering of projected DOS
p,px,py,pz, real basis
d,dz2,d(x2-y2),dxy,dxz,dyz, real basis

atom 3 ordering of projected DOS
s
p,pxy,pz, axial basis
d,dz2,d(x2-y2),d(yz+xz),dxy, axial basis
f,A2,[x(T1)+y(T1)],z(T1),[ksi(T2)+eta(T2)],zeta(T2), axial basis

A2=xyz x(T1)=x(x2-3r2/5) y(T1)=y(y2-3r2/5) z(T1)=z(z2-3r2/5)
ksi(T2)=x(y2-z2) eta(T2)=y(z2-y2) zeta(T2)=z(x2-y2)

Data for interstital DOS correspond to atom index 8

The output for the population matrix integrated over energy is written to case.dmat [up/dn] that
has the same format as analogous file calculated by lapwdm.
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8.24 RENDOS (Renormalize partial DOS inside spheres)

This program renormalizes the partial DOS (from tetra) inside the spheres by a least squares
procedure such that the sum of the PDOS is equal to the total DOS. As starting point it redistributes
the interstital DOS into atomic PDOS according to to the inverse amount of the corresponding
partial charge of the free atom inside its atomic sphere. A least squares procedure allows for a
further readjustment due to localization/delocalization of the wave functions in the solid.

8.24.1 Execution

The program rendos requires case.struct, case.outputst, case.int and the partial den-
sity of states case.dos1ev, case.dos2ev, ... as input. You need to generate the partial
DOS for ALL atoms and ALL relevant “chemical angular momenta” (eg. C-s and C-p; or Ti-s and
Ti-d) using the tetra program. Sometimes it is necessary to include also orbitals which are not
occupied in the free atom (like Ti-4p).

The program rendos is executed by invoking the command:

x rendos [-up | -dn] or rendos rendos.def

You are asked interactively if you would like to optimize the fractional charges such that the sum
of the partial DOS comes closer to the total DOS (to account for the missing interstitial). The
renormalized DOS (case.dosrn1ev) can be plotted by dosplot2 lapw -ren).

8.25 SPAGHETTI (energy bandstructure plots)

This program generates an energy bandstructure plot (postscript file case.spaghetti ps
and xmgrace file case.bands.agr) using the eigenvalues printed in case.output1 or
case.outputso (with switch -so) or case.energy (with switch -enefile). Using the SCF po-
tentials one runs x lapw1 -band with a special k-mesh (case.klist band) along some high-
symmetry lines (some sample inputs can be found in SRC templates/*.klist or you create
your own k-mesh using Xcrysden). As an option, one can emphasize the character of the bands
by additionally supplying corresponding partial charges (file case.qtl which can be obtained
using x lapw2 -qtl -band , see 7.9). This will be called “band-character plotting“ below, in
which each energy is drawn by a circle whose radius is proportional to the specified character of
that state. It allows to analyze the character of bands (see also figures 3.13 and 3.14). The circle size
labelling and the header of the plot can easily be switched off by ”header=0” in case.insp.

It is also possible to indicate the band masses using file case.qtlmstar which can be obtained
using x mstar and x mstarqtl, see 8.18.

The file case.spaghetti ps can be viewed by any postscript viewer (ghostscript, gv, ...). It is
a plain text file and can be easily modified by an editor. For instance unwanted text can easily
be removed changing the bounding box pixels (x0,y0, xmax,ymax). gv will tell you the required
pixels when you move the mouse to the desired left lower and right upper places, respectively.

The file case.bands.agr can be opened directly with xmgrace. Within xmgrace, all features
of the plot, such as the plot range, the plot size, line properties (style, thickness and color), axis
properties, labels, etc. can easily be changed by either using the menu (submenus of the ”Plot”
menu) or double-klicking on the corresponding part of the figure. The size of the characters for a
“band-character plot“ can be changed in the menu ”Plot / Graph appearance / Z normalization”.
The figures can directly be printed or exported in eps, jpg, png and other formats, via the menus
”File / Print setup” and ”File / Print”.
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C.Persson has modified this program and it allows now also to draw connected lines. For this pur-
pose it uses the irreducible representations (from file case.irrep produced by program irrep
together with a table of “compatibility relations” to decide which points should be connected (non-
crossing rule !). (Note: This option will NOT work on the surface of the BZ for non-symmorphic space-
groups, because the corresponding group-theory has not been implemented.)

The presence of “incompatible” case.irrep or case.qtl files (from a previous run or qtls from
a DOS calculation) may crash spaghetti. In such cases it is necessary to remove these files explicitly.

8.25.1 Execution

The program spaghetti is executed by invoking the command:

spaghetti spaghetti.def or x spaghetti [-up|dn] [-so] [-p] [-hf]
[-enefile]

The -p switch directs spaghetti to use the case.output1 * files of a k-point parallel lapw1.

8.25.2 Input

An example is given below:

----------------- top of file: case.insp -------------------
### Figure configuration
5.0 3.0 # paper offset of plot
10.0 15.0 3.0 # xsize,ysize [cm], linebreak-parameter
1.0 4 # major ticks, minor ticks
1.0 1 1 # character height, font switch, header printing (0/1)
1.1 2 4 # line width, line switch, color switch
### Data configuration
-25.0 15.0 2 # energy range, energy switch (1:Ry, 2:eV)
1 0.74250 # Fermi switch, Fermi-level (in Ry units)
1 999 # number of bands for heavier plotting 1,1
0 1 0.02 1.0 # jatom, jcol, size of heavier plotting
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
test

test line must start with ’###’. Begin of figure description. This tests also if
you use the new input (different from WIEN97 or early WIEN2k ver-
sions)

line 2: free format
xoffset, yoffset

xoffset x offset (in cm) of origin of plot
yoffset y offset (in cm) of origin of plot

line 3: free format
xsize,ysize,linebreak

xsize plotsize in x direction (cm)
ysize plotsize in y direction (cm)
linebreak parameter to adjust the line break for non-continuous k-path
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line 4: free format
eincr, mtick

eincr energy increment where y-axis labels are printed (major ticks)
mtick number of minor ticks of y-axis

line 5: free format
charh, font, header

charh scaling factor for size of labels
font 0 no text

1 Times and Symbol
2 Times,Times-Italic and Symbol
3 Helvetica, Symbol, and Helvetica-Italic
4 include your own fonts in defins.f

header 0/1 print header on top of plot and circle scale (bottom) (off/on)

line 6: free format
linew, ilin, icol

linew line width
ilin 0 dots or open circles

1 lines
2 lines and open circles
3 lines and filled circles

icol 0 black
1 one-color plot
2 three-color plot
3 multi-color plot
4 multi-color plot,one color for each irred. representation

line 7: free format
test

test line must start with ’###’. Begin of data description.

line 8: free format
emin, emax, iunits

emin energy minimum of plot
emax energy maximum of plot
iunits

1 energies in Ry (internal scale)
2 energies in eV with respect to Ef

line 9: free format
iferm, efermi

iferm 0 no line at EF
1 solid line at EF
2 dashed line at EF
3 dotted line at EF

efermi Fermi energy (Ry); can be found in the respective case.scf file. If set
to 999., Ef is not plotted (and iunits=2 cannot be used)
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line 10: free format

nband1,
nband2

lower and upper band index for bands which should show “band-
character plotting“ (if case.qtl is present and the proper switch is
set, see below). In addition the corresponding x and y coordinates are
written to file case.spaghetti ene (which can be used for plotting
with an external xy-plotting program).

line 11: free format
jatom, jcol, jsize, power

jatom If a case.qtl file is present, jatom indicates the atom whose charac-
ter (selected by jcol) is used for “band-character plotting“ (dots are re-
placed by circles with radii proportional to the corresponding weight,
requires ilin=0,2,3). If set to zero or if case.qtl is not present, “band-
character plotting“ does not occur. If jatom is -1, the program will try
to use case.mstarqtl, which should contain the corresponding band
masses (see Section 8.18)

jcol specifies the column to be used in the respective QTL-file. 1 means total,
2 . . . s, 3 . . . p, . . . The further assignment depends on the value of ISPLIT
set in case.struct. (ignored for jatom=0). The description can be
found in the header of case.qtl. jcol is ignored for band masses.

jsize size factor for radii of circles used in “band-character plotting (r =
(QTL ∗ jsize)power)”

power (optional, default=1.0) size power factor, see above.

if line 11 is repeated, one can average the QTLs for different atoms (but with identical jcol and
jsize).

8.26 TELNES3 (calculation of energy loss near edge structure)

This program was contributed by:

	
Kevin Jorissen and Cécile Hébert
Ecole Polytechnique Federale de Lausanne

Please make comments or report problems with this program to the WIEN-mailinglist. If necessary,

we will communicate the problem to the authors.

The TELNES3 program calculates the double differential scattering cross section (DDSCS) on a
grid of energy loss values and impulse transfer vectors. This double differential cross section is
integrated to yield a differential cross section, which is written to file. The differential cross section
is either a function of energy (ELNES integrated over impulse transfer q); or a function of impulse
transfer (ELNES integrated over energy loss E), which shows the angular behavior of scattering.

The DDSCS is calculated as described in a forthcoming publication by K. Jorissen, C. Hebert, and
J. Luitz. (The Ph.D. thesis of K. Jorissen (http://www.wien2k.at/reg_user/textbooks/)
also describes the formalism onto which TELNES3 is built in great detail.) This formalism allows
calculation of relativistic EELS including transitions of arbitrary order (i.e., non-dipole transitions).
It takes into account the relative orientation between sample and beam. If this is not necessary

http://www.wien2k.at/reg_user/textbooks/
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(because the crystal is isotropic, or the sample is polycrystalline), the formula may be integrated
over 4π, simplifying the calculation. Both scenarios are implemented in TELNES3.

A note to our faithful fans from the early days: it used to be necessary to play such tricks as
recompiling lapw2 with lxdos=3 ; to create k-meshes without symmetry ; and to edit case.struct
and set ISPLIT to 99. This is no longer necessary. Just sit back, relax, and press the buttons in
w2web. The integration with the package qtl will do the job.

8.26.1 Execution

Execution

The program telnes3 is executed by invoking the command:

telnes3 telnes3.def or x telnes3 [-up|-dn]

8.26.2 Input

TELNES3 requires one input file - case.innes. We recommend using InnesGenTM of w2web
to create this input file in a clear and intuitive way. If you wish to manually edit the file, please
refer to the following description. Please note that input files created for TELNES2 may or may
not work with TELNES3, depending on which optional keywords were used. There isn’t a shred
of compatibility with the old TELNES program.

The file case.innes consists of two parts: a first block with required input, and a second block
with optional input. In fact, the second part may be omitted altogether. The simplest input file
looks like this:

Graphite C K edge of first atom.
1 (atom)
1, 0 (n, l core)
285 (E-Loss of 1st edge in eV)
300 (energy of the incident electrons in keV)
0.0 20.0 0.1 (the energy mesh)
5.0 1.87 (collection semiangle, convergence semiangle, both in mrad)
10 1 (NR, NT, defining the integration mesh in the detector plane)
0.8 (spectrometer broadening in eV)
END

This first part of the file is not formatted and contains the following information:
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line value explanation
1 ‘Graphite ...’ Title (of no consequence for the calculation)
2 1 Atom number as given in case.struct (the index which numbers inequiva-

lent atoms)
3 1 0 main and orbital quantum number n and l of the core state; eg. 1 0 stands

for 1 s
4 285 energy of the edge onset in eV (here for the C K edge)
5 300 beam energy in keV
6 0.0 20.0 0.1 energy mesh given as EminEmaxEstep; all values in eV. 0.0 is the edge

threshold.
7 5.0 1.87 detector collection semiangle and microscope convergence semiangle in

mrad
8 10 1 parameters NR and NT which determine the mesh used for sampling the

distribution of Q-vectors allowed by collection and convergence angles
9 0.8 spectrometer broadening FWHM in eV
10 END keyword telling the program that there is no more input to read. Optional

keywords and values must be inserted before this line!

There are many other parameters that control the calculation, most of which are set to reasonable
default values. To use these advanced parameters, add corresponding keywords before the END
keyword. We recommend using InnesGenTM of w2web to create this input file.

Currently, the keywords listed below may be used. Although only the first four characters of each
keyword are read, we recommend using the full keyword for clarity.

VERBOSITY
n eg. : 1

Specifies how much output you’ll get. n must be 0 (only basic output; default), 1 (medium output)
or 2 (full output, including more technical information).

ATOMS
n1 n2 eg. : 1 3 (default : 1 0 == 1 mult(natom) )

The atom number on line 2 (see above) corresponds to a class of equivalent atoms in case.struct.
Equivalent positions n1 to n2 will contribute to the spectrum (default : sum over all atoms in the
equivalency class). Since all equivalent atoms have identical electronic structure up to a symmetry
operation, this will simply yield a prefactor (n2-n1+1) for the orientation averaged spectrum, but as
each equivalent atom has a different orientation with respect to the beam, this setting will influence
the shape of an orientation sensitive spectrum.

DETECTOR POSITION
theta_x theta_y eg. : 0.5 0.5 (default : 0 0)

By default, the detector is aligned with the incoming beam - i.e., source, sample, and detector are
connected by a straight line. This card shifts the detector in a plane perpendicular to the incoming
beam. The shift is expressed as an angle in mrad. If one draws a line between source and sample,
and another line from the sample to the center of the detector aperture, these 2 lines will form an

angle of
√
theta2x + theta2y mrad.

MODUS
m eg. : angles (default is energy)
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The output is a spectrum as a function of energy if m=energy. The output is a spectrum as a
function of impulse transfer/scattering angle if m=angle.

SPLIT
splitting energy eg. : 2.7

If the initial state has an orbital quantum number larger than 0, it will generate two superposed
edges: one corresponding to j = l−1/2, and one corresponding to j = l+1/2 (eg., for the 2p initial
state we have a L3 and a L2 edge). The splitting energy sets the energy separation of the two edges
and should be given in eV (here, L3 is at the energy specified in the beginning of case.innes, and L2
is 2.7 eV higher). By default (keyword omitted), the splitting energy is calculated by the program.
It is generally quite accurate.

BRANCHING RATIO
branching ratio eg. : 1.4

The branching ratio is a scaling factor (eg., here the ratio of intensities L3/L2 would be set to 1.4).
By default (keyword omitted), the branching ratio is set to its statistical value of (2l + 2)/2l.

NONRELATIVISTIC

This key tells the program not to use the relativistic corrections to the scattering cross section. This
option generates spectra identical to output of the old TELNES program. This produces incorrect
results in many cases. By default, relativistic calculations are done.

INITIALIZATION
make_dos write_dos eg. N N (default : Y Y)
make_rot.mat. write_rot.mat eg. Y N (default : Y Y)

TELNES3 needs many ingredients for its calculations, and this key defines how it gets two of them:
the density of states, and the rotation matrices (used for transforming q-vectors from one atom to
an equivalent atom). The first entry says whether or not the ingredient has to be calculated (Y :
calculate; N : read from file), and the second entry says whether or not the ingredient has to be
written to file (Y : write; N : don’t write). If make dos=Y, a file case.qtl must be present from which
the dos will be calculated. If make dos=N, then either a file case.dos or a file case.xdos con-
taining the (x)dos must exist. If make rot.mat=N, a file case.rotij containg the rotation matrices
must exist. If write rot.mat=Y, a file case.rotij is written. If write dos=Y, a file case.dos or
case.xdos is written. The calculation of the rotation matrices is computationally negligible, but
it is recommended to write the xdos to file and not calculate it over and over again.

QGRID
qmodus eg. L (U by default)
theta_0 eg. 0.05 (no default value) )

A collection angle α and convergence angle β allow scattering angles up to α+β and a correspond-
ing set of Q-vectors. This set (a disk of radius α+ β) is sampled using a discrete mesh. Three types
of meshes are implemented :

U a uniform grid, where each Q-vector samples an equally large part of the disk. Sampling is set
up by drawing NR equidistant circles inside the big circle, and choosing (2i − 1)NT points
on circle i, giving NR2 ∗NT points in total.
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L a logarithmic grid with NR circles. The distance between circles increases exponentially. There
are (2i − 1)NT points on circle i, and NR2NT points in total. Circle i is at radius theta 0
e((i−1)dx), where dx depends on NR, α and β.

1 a one dimensional logarithmic mesh; there are NR circles at exponential positions, and only one
point on each circle (soNR points in total). This means we sample a line in the detector*beam
plane. An economic way of getting spectra as a function of scattering angle in cases with
symmetric scattering.

The line specifying theta 0 is to be omitted for the U grid.

ORIENTATION SENSITIVE
g1 g2 g3 (eg. 0.0 40.0 0.0) (no default value)

This key tells the program not to average over sample to beam orientations, but to use the partic-
ular sample to beam orientation defined by the three Euler angles (to be given in degrees). The
Euler angles (0,0,0) means that the electron beam is parallel to the c-axis of the crystal and the 3
angles rotate with respect to the x-, y- and z-axes, respectively. Most likely, this option needs larger
NR (and NT). If the ORIENTATION SENSITIVE key is not set, the program will average over all
orientations (default).

SELECTION RULE
type (eg. : q) (default : n)

The formula for the DDSCS contains an exponential factor in q, which we expand using the
Rayleigh expansion. We identify each term in the expansion by the order lambda of the spheri-
cal Bessel function jλ(q) it contains. This key keeps some terms and discards others. This can be
useful to eliminate unwanted transitions ; to study a spectrum in greater detail ; or simply to speed
up the calculation significantly. Possible settings for ‘type’ are :

m : use lambda = 0 only
d : use lambda = 1 only
q : use lambda = 2 only
o : use lambda = 3 only
n : no selection rule, calculate all transitions
0-3 : all transitions up to lambda (eg., 1 means lambda = 0 and 1)

Be aware that the availability of the DOS limits the possible transitions (WIEN2k gives us the
DOS only up to l=3). In the nonrelativistic limit, the SELECTION RULE and LSELECTION RULE
coincide i.e., the λ = 1 terms correspond to dipole transitions etc. This is no longer true in the
relativistic case.

LSELECTION RULE
type (eg. : q) (default : d)

Whereas the previous key selects transitions by the order of the interaction potential, this key se-
lects them by the L-character of the final states. Possible settings for ‘type’ are (the orbital momen-
tum of the initial state being denoted with l):

m : L=l
d : L=l +/- 1
q : L=l +/- 2
o : L=l +/- 3
n : no selection rule, calculate all transitions
0-3 : |L-l| <= type
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Be aware that the availability of the DOS limits the possible transitions (WIEN2k gives us the
DOS only up to l=3). In the nonrelativistic limit, the SELECTION RULE and LSELECTION RULE
coincide i.e., the λ = 1 terms correspond to dipole transitions etc. This is no longer true in the
relativistic case.

EXTEND POTENTIALS
Rmax sampling lmax refine (e.g.: 3.0 15 0 1.0) (no defaults)

Calculate matrix elements beyond the muffin tin radius up to r = rmax (in Bohr units). Refine the
radial grid by a factor refine (1 means default sampling density). This is done by evaluating the
potential as given in case.vtotal, which must be present for this type of calculation, and reexpand-
ing it in spherical harmonics, using an angular grid with step of sampling degrees, and expanding
up to l=lmax. Currently, users should keep lmax to 0 and almost certainly refine to 1.0 . However,
advanced users can play around with the software and tweak it to do interesting things if they
wish. TELNES3 only requires the spherical potential l=0.

FERMI ENERGY
Ef (e.g. 0.75)

Manually set the Fermi energy to Ef (needs to be given in Rydberg units). (The default behavior is
to get Ef from the header of case.qtl.)

CORE WAVEFUNCTION
filename (e.g. case.cwf)

Read the wave function of the initial state from file. (Default behavior is to calculate it instead.)

FINAL STATE WAVEFUNCTION
filename (e.g. case.finalwf)

Read the radial wave functions of the final state from file. (Default behavior is to calculate it in-
stead.)

RELATIVISTIC
Itype (e.g. 1)

Determines which flavor of relativity to use : 0 means nonrelativistic (as in TELNES), 1 means fully
relativistic (default), 2 means using the contracted q-vector (only valid for dipole transitions ; as in
TELNES2).

NOHEADERS

Don’t put headers in output files. This can be helpful if your plotting program doesn’t like the
headers. (Gnuplot doesn’t mind them.)

DOSONLY

Don’t calculate the EELS spectrum halt the program after the calculation of the density of states is
finished.

NBTOT
nb (e.g. 200 )
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Arrays for the DOS are first allocated at some initial size, and then reallocated at larger size if
necessary. Unfortunately, these reallocation routines appear unstable in some circumstances. This
card allows the user to set an array size manually and avoid the need to reallocate (nb is the number
of bands). However, very large systems may lead the system to run out of memory and cause a
crash.

The following cards are not yet activated (placeholders): TABULATE, SPIN

The following cards are no longer active and must be removed or renamed: XQTL, WRONG.

8.26.3 Practical considerations

A typical ELNES calculation consists of the following steps:

I initialize (init lapw) and converge a SCF calculation (run lapw)
I provide a suitable case.innes file
I if more excited states are needed than given by the SCF calculation, raise the upper energy

limit in case.in1 and run x lapw1
I create the case.qtl file using x qtl -telnes
I calculate the EELS spectrum using x telnes3. It is generally a smart move to make the

program calculate the DOS on the biggest energy grid you wiill ever need, save this to file,
and simply read it from file for all future calculations (INITIALIZATION key). The same
should be done for calculations using EXTEND POTENTIAL (use CORE WAVEFUNCTION
key to save to file). This saves time. (In case of disk space problems, once the case.qtl file
has been created, the case.vector files can be deleted. Similar, the case.qtl file can be
deleted or compressed once the case.dos file exists.)

I add broadening to the spectrum using x broadening. If you wish, editing the case.inb
file allows tweaking of the broadening.

I study the output (case.elnes or case.broadspec are the place to start).
I if you wish to do more calculations, save the current results using save eels -d

calculation1 . Edit case.innes and run x telnes3 again.

This sequence can conveniently be executed using w2web by simply clicking one button after the
other.

8.26.4 Files

TELNES3 uses a lot of files. Many output files are only written if VERBOSITY is set to a high level.
Many input files are required only for certain input settings in case.innes. We list here all files
possibly used by TELNES3 (and listed in telnes3.def). Each filename is followed by I or O
(input/output), a short description of the file content, and a comment on when the file is used.

I case.innes (I). Defines the ELNES calculation. Always read.
I case.struct (I). Defines the crystal. Always read.
I case.vsp (I). Spherical component of the crystal potential. Read unless core and final state

wavefunctions are read from file.
I case.vtotal (I). Total crystal potential (can be generated by lapw0). Read if EXTEND POTEN-

TIAL is used.
I case.rotij (I). Rotation matrices that transform q-vectors between equivalent atoms. Read if

INITIALIZATION tells the program to do so.
I case.dos (IO). l-resolved density of states. Read or written depending on INITIALIZATION

settings.
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I case.xdos (IO). lm,l’m’-resolved density of states. Read or written depending on INITIAL-
IZATION settings; only if the calculation is orientation resolved.

I case.qtl (I). contains partial charge components and Fermi energy. Read if DOS needs to be
calculated (INITIALIZATION) or if Fermi energy is not specified using FERMI.

I case.inc (I). Specifies core states. Only read if core states are calculated.
I case.kgen (I). contains k-mesh to sample the Brillouin Zone. Read if DOS needs to be calcu-

lated.
I case.outputelnes (O). Main log file. Always written. Content depends on VERBOSITY.
I case.elnes (O). Total spectrum. Always written.
I case.sdlm (O). Partial (l,m) spectra. Written if verbosity > 0.
I case.ctr (O). (l,m,l’m’) crossterms. Written if verbosity > 0 and calculation is orientation sen-

sitive.
I case.corewavef (O). Contains core wavefunctions. Written if core wavefunctions were calcu-

lated and verbosity > 1.
I case.final (O). Contains APW radial basis functions for final states at selected energies. Writ-

ten if verbosity > 1.
I case.ortho (O). Contains scalar products of initial and final states. Written if verbosity > 1.
I case.matrix (O). Proportionality between partial DOS and spectrum for each l-value. Written

if verbosity > 0 and MODUS is energy.
I case.cdos (O). Selected (l,m,l’m’) cross-DOS terms. Written if calculation is orientation sensi-

tive and verbosity > 1 or INITIALIZATION causes DOS to be written to file.
I case.sp2 (O). Integrated cross sections as a function of collection angle for all l-values. Written

if calculation is orientation sensitive, MODUS is set to angle and verbosity > 1.
I case.angular (O). Differential cross section as a function of scattering angle for all l-values.

Written if calculation is orientation sensitive, MODUS is set to angle and verbosity > 1.
I case.inb (O). Settings for the broadening program. Always written.
I case.eelstable (O). Placeholder. Not currently used.
I telnes3.def (I). List of files used by TELNES3. Always read.
I telnes3.error (O). Error file containing current error message; empty after successful calcula-

tion. Always written.

8.27 TETRA (density of states)

This program calculates total and partial density of states (DOS) by means of the modified tetra-
hedron method [Blöchl et al., 1994]. Please note, the tetrahedron method will not work with just
one k-point and tetra will automatically switch to a Gaussian broadening scheme (with default
broadening of 0.01 Ry). The broadening schemes can also be selected by input (see below), but is
not recommended for small unit cells.

It uses the partial charges in case.qtl generated by the programs lapw2 (switch QTL) or qtl
and generates the DOS in states/Ry(cell (files case.dos1/2/3/...) and in states/eV(cell (with
respect to the Fermi energy; files case.dos1/2/3ev). In spin-polarized calculations the DOS is
given in states/Ry/spin (or states/eV/spin).

Alternatively and for the total DOS only, you can use the switch -enefile which does not re-
quire case.qtl, but uses case.energy and case.scf2 (in case of parallel lapw1 use “cat
case.energy 1 case.energy 2 ... ¿ case.energy”).

Please note: The total DOS is equal to the sum over the atoms of the total-atomic DOS (inside
spheres) and the interstitial-DOS. (Thus in the total-atomic DOS the “multiplicity” of an atom is
considered). On the other hand, in the partial (lm-like) DOS the multiplicity is not considered and
one obtains the total-atomic DOS as a sum over all partial DOS times the multiplicity.

The “m-decomposed” DOS (e.g. pz, py, px) is given with respect to the local coordinate system for
each atom as defined by the local rotation matrix (see Appendix A), unless you have used x qtl
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to generate the case.qtl and specified a specific coordinate system in case.inq (see Chapter
8.23).

You can also direct tetra to sum-up some partial DOS components into a single DOS. This is for
instance useful to sum over the different positions of one element.

Using the switches -rxesw E1 E2 it is possible to generate a “weight-file”, where each k-point
is weighted according to its contribution to the DOS in the energy range E1-E2. This weight-file
case.rxes can be used using the switch -rexs to calculate the DOS with these weights. This
option might be useful to simulate the E-dependency of RXES spectra, or in general calculate a
“DOS” of regions around selected k-points only.

Using KSELect=xx in case.int you can plot a DOS with contributions only from tetrahedra con-
taining k-point xx.

The density of states in files case.dos1/2/3/... or case.dos1/2/3/...ev can be plotted by
dosplot2 lapw (see 5.10.5) or Cgrace dos lapw (see 5.10.6).

8.27.1 Execution

The program tetra is executed by invoking the command:

tetra tetra.def or x tetra [-up|dn -enefile -so -hf -rxes -rxesw
E1 E2]

8.27.2 Dimensioning parameters

The following parameters are listed in file param.inc:

MG max. number of DOS cases
LXDOS usually 1, except for “cross-DOS” when using TELNES.2 = 3 (not needed any-

more for TELNES3)

8.27.3 Input

The required input file case.int can optionally be created using the w2webinterface or the
configure int lapw script (see 5.2.16).

An example is given below:

------------------ top of file: case.int ------------------
TiO2 # Title
-1.000 0.00250 1.200 0.003 # EMIN, DE, EMAX for DOS, GAUSS-Broad

7 N 0.000 KSEL=-1 # NUMBER OF DOS-CASES, N/G/L/B broadening, KSEL
0 1 tot # jatom, doscase, description
1 2 Ti-s
1 3 Ti-p
1 4 Ti-px
1 5 Ti-py
1 6 Ti-pz
2 1 O-tot

SUM: 1 2 # NUMBER OF SUMMATIONS, max-nr-of summands
2 3 # this sums dos-cases 2+3 from the input above
------------------- bottom of file ------------------------

Interpretive comments on this file are as follows:

line 1: free format
title
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line 2: free format
emin, delta, emax, broad

emin,
delta,
emax

specifies the energy mesh (in Ry) where the DOS is calculated. (emin
should be set slightly below the lowest valence band; emax will be
checked against the lowest energy of the highest band in case.qtl,
and set to the minimum of these two values; delta is the energy incre-
ment.

broad Gauss-broadening factor. Must be greater than delta to have any effect.

line 3: free format
ndos, Bmethod, broadening, KSEL

ndos specifies the number of DOS cases to be calculated. It should be at least
1. The corresponding output is written in groups of 7 to respective
case.dosX files

Bmethod optional input (can be omitted) to select instead of the tetrahedron
method:

G Gaussian broadening
L Lorentzian broadening
B both, Gauss and Lorentzian broadening

broadening parameters in Ry, typically below/around 0.01 (optional, specify two
numbers for B)

KSEL xx Create a DOS only from tetrahedra containing k-point number xx (in
case.klist)

-1 KSEL option switched off

line 4: (2i5,3x,a6)
jatom, jcol, description

jatom specifies for which atom the DOS is calculated. 0 means total DOS,
jatom = nat+ 1 means DOS in the interstitial, where nat is the number
of inequivalent atoms. When spin-orbit is included, jatom = nat + 1
gives total spin-up/dn DOS in a spinpolarized SO calculation, but is
meaningless in a non-spinpolarized SO case.

jcol specifies the column to be used in the respective QTL-file. 1 means total,
2 . . . s, 3 . . . p, . . . The further assignment depends on the value of ISPLIT
set in case.struct (see sec. 4.3); the respective description can be
found in the header of case.qtl.

description text used for further identification.

>>>:line 4 is repeated “ndos“ times
line 5: optional line (free format)

SUM, nsum, isummax

SUM the keyword SUM directs tetra to add-up some partial DOS specified in
the lines above and produce case.dossum and case.dossumev.

nsum number of summations as specified below (max 7).
isummax max number of summands in the lines below.

line 6: optional line (free format)
iline1 iline2 ...
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iline1,2,.. gives the DOS-cases which should be summed up (max isummax cases)
.

>>>:line 6 is repeated “nsum“ times

8.28 XSPEC (calculation of X-ray Spectra)

This program calculates near edge structure of x-ray absorption or emission spectra according to
the formalism described by [Neckel et al., 1975, Schwarz et al., 1979, Schwarz and Wimmer, 1980].
For a brief introduction see below. It uses the partial charges in case.qtl. This file must be gen-
erated separately using lapw2. Partial densities of states in case.dos1ev are generated using
the tetra program. Spectra are calculated for the dipole allowed transitions, generating ma-
trix elements, which are multiplied with a radial transition probability and the partial densities
of states. Unbroadened spectra are found in the file case.txspec, broadened spectra in the file
case.xspec. Other generated files are: case.m1 (matrix element for the selection rule L+1)
and case.m2 (matrix element for the selection rule L-1) and case.corewfx (radial function of
the core state). The calculation is done with several individual programs (initxspec, tetra,
txspec, and lorentz). which are linked together with the c-shell script xspec.

It is strongly recommended that you use “Run Programs o Tasks o X-ray spectra” from w2web.

8.28.1 Execution

Execution of the shell script xspec

The program xspec is executed by invoking the command:

xspec xspec.def or x xspec [-up|-dn]

Sequential execution of the programs

Besides calculating the X-ray spectra in one run using the xspec script, calculations can be done
“by hand“, i.e. step by step, for the sake of flexibility.

initxspec This program generates the appropriate input file case.int, according to the dipole
selection rule, for the subsequent execution of the tetra program.
The program initxspec is executed by invoking the command:

initxspec xspec.def or x initxspec [-up|-dn]

tetra The appropriate densities of states for (L+1) and (L-1) states respectively are generated by
execution of the tetra program.
The program tetra is executed by invoking the command:

tetra tetra.def or x tetra [-up|-dn]

txspec This program calculates energy dependent dipole matrix elements. Theoretical X-ray spec-
tra are generated using the partial densities of states (in the case.dos1ev file) and multi-
plying them with the corresponding dipole matrix elements.
The program txspec is executed by invoking the command:

txspec xspec.def or x txspec [-up|-dn]
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lorentz The calculated spectra must be convoluted to account for lifetime broadening and for a
finite resolution of the spectrometer before they can be compared with experimental spectra.
In the lorentz program a Lorentzian is used to achieve this broadening.
The program lorentz is executed by invoking the command:

lorentz xspec.def or x lorentz [-up|-dn]

If you want ”orientation” sensitive XSPEC (like p-parallel and p-normal spectra, you may change
in case.int the column-number to eg. px or pz and rerun the last tree steps of the script above
mnually.

8.28.2 Dimensioning parameters

The following dimensioning parameters are collected in the files param.inc of SRC txspec and
SRC lorentz:

IEMAX0 maximum number of energy steps in the spectrum (SRC lorentz)
NRAD number of radial mesh points
LMAX highest l+1 in basis function inside sphere (consistent with input in case.in1)

8.28.3 Input

Two examples are given below; one for emission spectra and one for absorption spectra:

Input for Emission Spectra:

---------------- top of file: case.inxs --------------------
NbC: C K (Title)
2 (number of inequivalent atom)
1 (n core)
0 (l core)
0,0.5,0.5 (split, int1, int2)
-20,0.1,3 (EMIN,DE,EMAX in eV)
EMIS (type of spectrum, EMIS or ABS)
0.35 (S)
0.25 (gamma0)
0.3 (W)
AUTO (generate band ranges AUTOmatically or MANually
-7.21 (E0 in eV)
-10.04 (E1 in eV)
-13.37 (E2 in eV)
------------------- bottom of file ------------------------

Input for Absorption Spectra:

---------------- top of file: case.inxs --------------------
NbC: C K (Title)
2 (number of inequivalent atom)
1 (n core)
0 (l core)
0,0.5,0.5 (split, int1, int2)
-2,0.1,30 (EMIN,DE,EMAX in eV)
ABS (type of spectrum)
0.5 (S)
0.25 (gamma0)
------------------- bottom of file ------------------------

Interpretive comments on these files are as follows.

line 1: free format
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TITLE Title

line 2: free format

NATO Number of the selected atom (in case.struct file)

line 3: free format

NC principle quantum number of the core state

line 4: free format

LC azimuthal quantum number of the core state

The table below lists the most commonly used spectra:

Spectrum n l
K 1 0
LII,III 2 1
MV 3 2

Table 8.123: Quantum numbers of the core state involved in the x-ray spectra

line 5 free format

SPLIT,
INT1,
INT2

split in eV between e.g. LII and LIII spectrum (compare with the re-
spective core eigenvalues), INT1 and INT2 specifies the relative inten-
sity between these spectra. Values of 0, 0.5, 0.5 give unshifted spectra.

line 6: free format

EMIN,
DE,
EMAX

minimum energy, energy increment for spectrum, maximum energy; all
energies are in eV and with respect to the Fermi level

EMIN and EMAX are only used as limits if the energy range created
by the lapw2 calculation (using the QTL switch) is greater than the
selected range.

line 7: Format A4

TYPE EMIS X-ray emission spectrum
ABS X-ray absorption spectrum (default)

line 8: free format

S broadening parameter for the spectrometer broadening. For absorption
spectra S includes both experimental and core broadening. Set S to zero
for no broadening.

line 9: free format

GAMMA0 broadening parameter for the life-time broadening of the core states.
Set GAMMA0 to zero to avoid lifetime broadening of the core states.
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line 10: free format

W broadening parameter for the life-time broadening of valence states. Set
W to zero to avoid lifetime broadening of the valence states.

line 11: format A4

BANDRA
AUTO band ranges are determined AUTOmatically (default)
MAN band ranges have to be entered MANually

line 12: free format

E0 Emission spectra: onset energy for broadening, E0, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

line 13: free format

E1 Emission spectra: onset energy for broadening, E1, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used

line 14: free format

E2 Emission spectra: onset energy for broadening, E2, generated automat-
ically if AUTO was set in line 10
Absorption spectra: not used
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9.1 add columns

add columns reads a sequence of pairs of 2 numbers (form stdin), adds them together and prints
the sum to stdout. If you have two columns of numbers in 2 files (eg. in colup and coldn) you can
add them using:

paste colup coldn | add columns > col

The source of this program is supplied in SRC trig.

9.2 add columns new

add columns new adds or subtracts two columns of data from two files You have to specify the
filenames and colums you want to add on the commandline like:

add columns new file1 col1 file2 col2 [add/sub]

The source of this program is supplied in SRC trig.

9.3 afminput

This program creates the inputfile case.inclmcopy st for the program clmcopy, which copies
spin-up densities of atom i to spin-down densities of the related antiferromagnetic atom j and vice
versa in an anti-ferromagnetic system. It uses a symmetry operation to find out how and which
atomic densities must be interchanged and how the Fourier coefficients of the density transform.
It is based on the ideas of Manuel Perez-Mato (Bilbao, Spain).

See $WIENROOT/SRC afminput/afminput test for several examples.

The best way is to supply a file case.struct supergroup, which is the struct file of the non-
magnetic supergroup. If the two spacegroups are “TRANSLATIONENGLEICH”, it will find out
automatically the proper symmetry operation. Please note, this automatic way works only when the
coordinate system remains identical. In some cases sgroup may interchange eg. the y and z axis. In such
cases reverse this change, both, for the lattice parameters as well as for all positions, set NSYM=0 and run
init lapw again (ignoring any suggestion of sgroup).

If the two spacegroups are “KLASSENGLEICH” (i.e. have the same number of symmetry opera-
tions), you will be asked to supply a translation which transforms the AF atoms into each other.
A typical example would be bcc Cr: the bcc supergroup and the AF subgroup (simple cubic) have
both 48 symmetry operations and the proper translation is (0.5,0.5,0.5).

Finally, if you don’t give case.struct supergroup, you have to supply a symmetry operation
(rotation + non-primitive translation) as input. For bcc Cr or the famous NiO-AFII structure this
would be simply 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

 0.5
0.5
0.5


Please see the comments in sect. 4.5.5 on how to proceed in detail for AFM calculations and find
further examples in SRC afminput.
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9.3.1 Execution

The program afminput is executed by invoking the command:

afminput afminput.def or x afminput

9.3.2 Dimensioning parameters

The following parameters are used:

NCOM number of LM components in the density (in param.inc)
LMAX max l for LM expansion of the density (in param.inc).

9.4 animxsf

animxsf creates an animated xsf file of your position-optimization using run/runsp -min or
min lapw. It calls a script scfapos lapw internally and generates anim.tmp from the scf file
(using the :APOSxxx lines). Then it converts this into an animated xsf file case.xsf, which can
be displayed using:

xcrysden --xsf case.xsf # (Modify - AnimationControl - OK)

It is executed using:

x animxsf [-f case -pos]

The -pos switch will use :POS instead of :APOS (useful when using min lapw, but you need to
copy case.scf mini to case.scf.

9.5 arrows

This program was contributed by:

	
Evgeniya Kabliman
Institute for MaterialsChemistry
TU Vienna
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

Small program which together with Xcrysden allows to display the “forces acting on all atoms” or
the “differences between two structures” using arrows which indicate the movement of the atoms.
The recommended sequence to visualize forces is:

I Prepare (copy) a struct and scf file with the initial structure using the names
case initial.struct and case initial.scf.

I View case initial.struct in Xcrysden and “File/Save as xsf-structure” with the name
case initial.xsf.

I x arrows
I View the resulting case forces.xsf using: xcrysden --xsf case forces.xsf.

Switch on “Display/Forces” and adjust the length of the arrows in “Modify/Force-settings”.
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while differences between the inital and relaxed structure can be viewed by:

I Prepare (copy) two struct files with the initial and the relaxed structure using the names:
case initial.struct and case final.struct.

I View case initial.struct in Xcrysden and “File/Save as xsf-structure” with the name
case initial.xsf.

I x -delta arrows
I View the resulting case delta.xsf using: xcrysden --xsf case delta.xsf. Switch

on “Display/Forces” and adjust the length of the arrows in “Modify/Force-settings”.

9.6 calLa Pre

Small program to calculate lattice parameters at a given pressure using case initial.struct
and case.outputeos (both are created by a standard wien2k volume optimization) at constants
b/a and c/a ratio

Contributed by by Morteza Jamal(m jamal57@yahoo.com).

9.7 cif2struct

cif2struct reads structural data in cif-format from case.cif and writes them into
case.struct. It is executed using:

cif2struct case.cif or cif2struct case.txt or x cif2struct [-txt]

The required cif files can be for example be obtained from Cystallographic databases (e.g. the
Inorganic Crystal Structure DataBase ICSD) or from other programs (when transfered from MS-
Windows, make sure to have it in “Unix-mode”, not in “Dos-mode”; if necessary use dos2unix
).

Alternatively, cif2struct can work with case.txt, which contains the following data:

a # a..Ang, b..Bohr
0.0 0.0 0.0 # shift of origin
4.7554 4.7554 12.991 90. 90. 120. # a,b,c,angles

’R-3c’ # spacegroup-symbol (see \STRUCTGEN{})
’Al’ # atom-name
0.0000000 0.0000000 0.3520000 # atomic position

’O’ # ...
0.3063000 0.0000000 0.2500000 # ...

...

9.8 clminter

clminter interpolates the density in case.clmsum/up/dn to a new radial mesh as defined in
case.struct new. This utility is useful when you run a structural minimization (min lapw),
some atoms start to overlap and you have to reduce RMT (the size of the atomic spheres) of certain
atoms. In such a case:

I save the calculations
I generate case.struct new with modified RMTs
I x clminter
I in spinpolarized case repeat this line with -up and -dn switches
I cp case.struct new case.struct

mailto:m_jamal57@yahoo.com
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I cp case.clmsum new case.clmsum
I optionally copy also case.clmup/dn files)
I run lapw; (it will probably take some iterations until you reach scf again, but it should be

much faster than starting with init lapw)

Note: Please be aware the the total energy will change with modified RMT (by some constant)
and you must not compare energies comming from different RMTs (but most likely you can deter-
mine the constant shift by repeating (at least) ONE calculation with identical structure but different
RMTs).

The source of this program is supplied in SRC trig.

9.9 clmcopy

This program generates the spin-dn density (case.clmdn) from a given spin-up density
(case.clmup) according to rules and symmetry operations in case.inclmcopy (generated ear-
lier by afminput) for an AFM calculation.

Please see the comments in sect. 4.5.5 on how to proceed in detail for AFM calculations.

9.9.1 Execution

The program clmcopy is executed by invoking the command:

clmcopy clmcopy.def or x clmcopy

9.9.2 Dimensioning parameters

The following parameters are used in param.inc:

NCOM number of LM components in the density
NRAD number of radial mesh points
NSYM number of symmetryoperations

9.9.3 Input

An example is given below:

---------------- top of file: case.inclmcopy -----------------------
2 NUMBER of ATOMS to CHANGE
1 2 INTERCHANGE these ATOMS

-1.00000000000 0.00000000000 0.00000000000 SYMMETRY OPERATION
0.00000000000 -1.00000000000 0.00000000000
0.00000000000 0.00000000000 -1.00000000000
0 NUMBER of LM to CHANGE SIGN
3 4 INTERCHANGE these ATOMS

-1.00000000000 0.00000000000 0.00000000000 SYMMETRY OPERATION
0.00000000000 -1.00000000000 0.00000000000
0.00000000000 0.00000000000 -1.00000000000
9 NUMBER of LM to CHANGE SIGN

1 0 1 0 -1.00
3 0 3 0 -1.00
3 2 3 2 -1.00
-3 2 -3 2 -1.00
5 0 5 0 -1.00
5 2 5 2 -1.00
-5 2 -5 2 -1.00
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5 4 5 4 -1.00
-5 4 -5 4 -1.00
1 0 0 0.50000
0 1 0 0.00000
0 0 1 0.50000

Interpretive comments on this file are as follows:

line 1: free format

NATOM Number of atoms for which rules for copying the density will be de-
fined

line 2: free format

N1, N2 Interchange spin-up and dn densities of atoms N1 and N2

line 3-5: free format

SYM Symmetry operation for atom N1 to rotate into N2 (without transla-
tional part)

line 6: free format

NLM Number of LM values, for which you have to change the sign when
swapping up and dn-densities

line 7ff: free format

L1,M1,L2,M2,Fac NLM pairs of L1,M1 (spin-up), which change into L2,M2 (spin-dn) and
the respecting CLMs are multiplied by Fac

Lines 2-7ff have to be repeated NATOM times.
line 8-10: free format

SYM0 Symmetry operation (one of the operations of the NM-supergroup
missing in the AFM-subgroup (transfers spin-up into spin-dn atom)

9.10 conv2prim

conv2prim creates the file case prim.struct which corresponds to the primitive cell of the
conventional unit cell specified by case.struct.

It is executed using:

x conv2prim or conv2prim conv2prim.def

9.11 create rho

The program create rho is called by the script create elf lapw and creates alpha=(tau-
tauW)/tauTF, z=tauW/tau or ELF=1/(1+alpha**2) from the corresponding rho, rho onedim or xsf
files containing the different kinetic energies tau, tauW and tauTF. See chapter 5.10.13.

The sources of the program create rho.f are supplied in SRC trig.
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9.12 eigenhess

This program was contributed by:

	
Laurence Marks
Dept. Materials Science and Engineering
Northwestern University
Evanston, USA
l-marks@northwestern.edu
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program analyses / manipulates .min hess, which was created by a structural minimiza-
tion using min lapw and the “PORT” option. In particular, such an analysis can yield approxi-
mate vibrational frequencies and corresponding eigenmodes, which can give a hint about a dy-
namically unstable structure (imaginary frequencies). Some more description is given in $WIEN-
ROOT/SRC pairhess/README.

The program eigenhess is executed by invoking the command:

x eigenhess

9.13 eosfit

Small program to calculate the Equation of States (EOS; Equilibrium volume V0, Bulk modulus
B0 and it’s derivative B′0. The Murnaghan [Murnaghan, 1944], the Birch-Murnaghan, the EOS2,
Vinet-Rose[Vinet et al., 1989] and Poirier-Tarantola[Poirier and Tarantola, 1998] equation of states
are supported. It relies on the file case.vol (containing lines with ”volume, E-tot”, usually cre-
ated from w2web using ”Volume optimization”), or alternatively is called from eplot lapw using
case.analysis (see 5.10.1 and 5.3.1).

The sources are supplied in SRC eosfit.

9.14 eosfit6

Nonlinear least squares fit (using PORT routines) for a parabolic fit of the energy vs. 2-4
dim. lattice parameters. It requires case.ene and case.latparam, usually generated by
parabolfit lapw. It can optionally produce case.enefit, which contains energies on a speci-
fied grid for plotting purposes (in 2D same format as case.rho, which can be used in contourplot
programs). (See 5.3.1).

The sources are supplied in SRC eosfit6.

9.15 fleur2wien

fleur2wien converts the FLEUR-file which contains the exchange-correlation poten-
tial (case.potential) into the WIEN2k-format (case.r2v(dn)). The FLEUR-file

mailto:l-marks@northwestern.edu
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case.lattice harmonics, which contains the linear combinations of spherical harmon-
ics, is also necessary. If the FLEUR and WIEN2k Bravais matrices are not the same, then the FLEUR
direct Bravais matrix has to be specified at the beginning of case.lattice harmonics below
the keyword bravais (a, b, c lattice parameters specified at the 1st, 2nd, 3rd lines, respectively).

It is executed using:

x fleur2wien or fleur2wien fleur2wien.def

9.16 hex2rhomb and rhomb in5

hex2rhomb interactively converts the positions of an atom from hexagonal to rhombohedral coor-
dinates (needed in case.struct).

rhomb in5 interactively helps to generate input case.in5 for density plots with lapw5 for rhom-
bohedral systems. It defines a plane as needed in the input file when you specify 3 atoms of that
plane.

The sources of these programs are supplied in SRC trig.

9.17 join vectorfiles

This program was contributed by:

	
Phillipp Wissgott
Institute of Solid State Physics
TU Vienna
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

Interactive program to combine parallel vector and energy files
(case.vector xx,case.energydum xx and case.energy xx) into single files
(case.vector, case.energydum and case.energy).

Executed by:

I x joinvec [-up/-dn/-so/-hf/-enefiles/-band]
I
I (x join vectorfiles [-up/-dn/-so/-hf/-enefiles] # for compatibility

9.18 pairhess

This program was contributed by:

	
James Rondinelli, Bin Deng and Laurence Marks
Dept. Materials Science and Engineering
Northwestern University
Evanston, USA
l-marks@northwestern.edu
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

mailto:l-marks@northwestern.edu
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This program creates an approximate hessian matrix (in .minpair) for structure minimization
using the PORT option. It uses a harmonic model with exponentially decaying bond strenght and
in many cases reduces the number of geometry steps during min lapw significantly. It is described
in detail in Rondinelli et al. 2006.

For its usage see the comments in sect. 5.3.2.

9.18.1 Execution

The program pairhess is executed by invoking the command:

pairhess pairhess.def or x pairhess [-copy]

The switch -copy copies .minpair to .minrestart and .min hess, which are needed in
min lapw.

9.18.2 Dimensioning parameters

The following parameters are used in param.inc:

NATMAX max. number of atoms)
NEIGMAX max number of neighbours

9.18.3 Input

pairhess uses an optional input file case.inpair, which is needed only for an experienced
user for better tailoring of certain default parameters.

An example is given below:

---------------- top of file: case.inpair -----------------------
10.0 2.0 0.25 (Rmax, Decay, ReScale)
0.05 1.0 0 (Cutoff, Diag, mode)
0.2 (ZWEIGHT

Interpretive comments on this file are as follows:

line 1: free format

RMAX Maximum distance (a.u.) for considering neighbors. 8-12 is good.

DECAY Exponential decay applied to neighbors when calculating the pairwise
bond strenghts. 1.5-2.5 is reasonable.

RESCALE A scaling term to multiply the pairwise hessian by. This number is
rather important; 0.25 appears to be best for a system with soft modes,
0.35 for a stiffer system. You can save substantial time by adjusting
RESCALE so it is approximately correct using a .min hess from a previ-
ous run (adjust until numbers for similar multiplicities are similar), or
by adjusting the frequencies (see also eigenhess).
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line 2: free format

CUTOFF When the weighting (via an exponential decay) becomes smaller than
this number the pairwise bonds are ignored.

DIAG The value to multiply a unitary matrix by, this is added to the hessian
estimate

MODE 0: Spring model; [1: harmonic model; not so good]

line 3: free format

ZWEIGHT Atomic number weight for bonds of form exp(-Z*ZWeight). Values of
0.1-0.2 are reasonable. The default is 0.1; a negative number (e.g. -1)
turns this off.

9.19 patchsymm

This program was contributed by:

	
James Rondinelli, Bin Deng and Laurence Marks
Dept. Materials Science and Engineering
Northwestern University
Evanston, USA
l-marks@northwestern.edu
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This program performs a symmetry check on the positions and produces a new struct file
case.struct new. It is useful in case something went wrong during min lapw (rounding er-
rors of positions) or the cif/amc file did not have enough digits (eg. “1/3” was prepresented by
“0.33333” only). The file case.outputpatch gives information on how parameters changed.

9.19.1 Execution

The program patchsymm is executed by invoking the command:

patchsymm patchsymm.def or x patchsymm

9.20 plane

plane helps to generate case.in5 for density plots with lapw5 (for orthogonal and hex lattices
only). The plane will be specified by 3 atoms and you need an auxiliary file plane.input, which
contains:

mailto:l-marks@northwestern.edu


9.21. READ VORB FILES 241

a,b,c # lattice parameters
x0,y0,z0 # position of atom (fractional coordinates), which will be centered in the plot
x1,y1,z1 # position of atom, which will be ‘‘below’’ the centered atom
x2,y2,z2 # position of atom, which will show to the ‘‘left’’
xl,yl # lenght (in bohr) of plot in x and y direction.
’P’ # defines lattice, either P (cartesian coordinates) or H (hexagonal) supported

The source of this program is supplied in SRC trig.

9.21 read vorb files

read vorb files adds case.vorbup/dn Bext to case.vorbup/dn. It is called by
runsp lapw when both, an external field and LDA+U/EECE is used.

read vorb files -up / -dn

The source of this program is supplied in SRC trig and was contributed by William Lafargue-Dit-
Hauret (Univ. Rennes).

9.22 reformat

To produce a surface plot of the electron density using rhoplot lapw (which is an interface to
gnuplot), data from the file case.rho created by lapw5 must be converted using reformat

The sources of the program reformat.c are supplied in SRC reformat.

9.23 spacegroup

This program was contributed by:

	

Vaclav Petricek
Institute of Physics
Academy of Sciences of the Czech Republic
Na Slovance 2
182 21 Praha (Prague) 8
Czech Republic
petricek@fzu.cz
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

Interactive program to generate equivalent positions for a given spacegroup and lattice. The pro-
gram is also used internally from w2web to generate positions when selecting spacegroups in the
StructGen.

mailto:petricek@fzu.cz
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9.24 struct2cif

struct2cif creates a cif-file case.cif from case.struct. It is executed using:

x struct2cif or struct2cif struct2cif.def

It was contributed by F. Boucher (Florent.Boucher@cnrs-imn.fr) and L.D.Marks (L-
marks@northwestern.edu). In order to work properly, the case.struct file should have a
spacegroup label included. There is also a similar program struct2xyz available.

9.25 struct2poscar

struct2poscar creates the files case.poscar and case.xyz from case.struct.
case.poscar and case.xyz are files which are used by the packages dftd3 and dftd4 when
periodic boundary conditions are switched on or off, respectively. It is executed using:

x struct2poscar or struct2poscar struct2poscar.def

9.26 structeditor

This program was contributed by:

	
Robert Laskowski
email: rolask@ihcp.a-star.edu.sg
Please make comments or report problems with this program to the WIEN-mailinglist. If necessary, we will

communicate the problem to the authors.

This package helps to manipulate structures. Usually one would start from an appropriate (simple)
case.struct file, and this tool allows to add or manipulate atoms (with or without symmetry
considerations), or generate arbitrary supercells or surfaces. It is commandline driven and tar-
geted for the more experienced user, who “knows what he wants to do” and is just looking for a
convenient tool.

It consists of a couple of octave (matlab) routines and some fortran code, thus it requires octave
(the free matlab version) and for visualization the xcrysden program.

A more extended documentation and some examples can be found in
$WIENROOT/SRC structeditor/doc, but the “most important” command helpstruct
lists all available functions:

a2adist * calculates distance between atoms
mina2adist * calculates minimum distance between atoms
addatom * adds an atom to the structure
addeqatom * adds an atom and all equivalent
copyatom * creates a copy of an atom
getaname * converts atomic number into atomic symbol
getar0 * calculates r0 from atomic number
getazz * converts atomic name into atomic number
loadstruct * reads Wien2k structfile
makeconventional * convestrs structure into the conventional form

mailto:Florent.Boucher@cnrs-imn.fr
mailto:L-marks@northwestern.edu
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makeprimitive * converts structure to the primitive form
makesupercell * creates supercell
makesurface * creates surface
mergestruct * merges two structures
movealla * moves all atoms with vector vec
replaceatom * replaces an atom with other atom
replaceeqatoms * replaces an atom and all equivalent with other atoms
rescale_c * rescales c for surface cell (vacume in the midle)
rescale_c_2 * rescales c for surface cell (vacume above)
rescale_c_3 * rescales c for surface cell (vacume audside)
rmatom * removes an atom
rmeqatoms * removes an atom and all equivalent
rotateall * rotates all atoms around z with a given angle
rotateatomlist * rotates specified atoms around z with a given angle
rotatethreedim * rotates specified atom around vector with given angle
savestruct * saves crystal structure
shiftatomlist * shifts specified atoms by a vector
showequivalent * outputs list of equivalent atoms
showstruct * displays structure (using xcrysden)
smultatom * creates symmetry equivalent positions
sshift * symmetric shifts of equivalent atoms

You can get then specific help on a particular function using eg.:
help makesurface.
Note: Several routines (in particular makesupercell or makesurface) need a “conventional” cell as
input. For all F, B or C-centered lattices you should first convert your structures using “makecon-
ventional”.

PS: It is also fairly trivial to construct new functions starting from already existing ones or by
combining them in a convenient way.

9.26.1 Execution

The structeditor is invoked within the octave environment and a typical sequence of com-
mands could be:

octave

s=loadstruct(”GaN.struct”)

# make an orthorhombic supercell and visualize it
a=[1 0 0; 1 1 0; 0 0 2]
sout=makesupercell (s,a);
showstruct(sout);

# save it as test.struct
savestruct (sout,”test.struct”);

# get help on all commands
helpstruct
# get help on the command makesupercell
help makesupercell
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9.27 StructGen of w2web

The new StructGen helps to generate the master input file case.struct. It has the following
additional features:

I automatic conversion from/to Å and Bohr
I Use spacegroup information (in conjunction with the spacegroup program (see 9.23 to gen-

erate equivalent positions)
I built in calculator to carry out simple arithmetic operations to specify the position pameters

(of the equivalent atoms). Each position of equivalent atoms can be entered as a number,
a fraction (e.g. 1/3) or a simple expression (e.g. 0.21 + 1/3). The first position defines the
variables x, y and z, which can be using in expression defining the other positions (e.g. −y,
x, −z + 1/2).

9.28 supercell

This program helps to generate supercells from a regular WIEN2k-struct file.

It asks interactively for the name of the original struct file and the number of cells in x, y, and
z direction. (Only integers are allowed, thus no rotations by 45o like sqrt(2) x sqrt(2) cells are
supported yet).

If symmetry permits, one can change the target lattice to P, B or F centered lattices, which allows to
increase the number of atoms in these supercells by a factor of 2, 4, 8, ...

Rhombohedral (R) lattices are converted automatically into H (hexagonal) lattices, which are 3
times larger than the original cell.

If the target lattice is P, one can add some vacuum in each direction for surface slabs (or chains or
isolated molecules) and also add a “top”-layer (repeat the atoms with z=0 at z=1).

You can define an optional shift in x,y,z direction for all the atoms in the cell. (This might be useful
if you want to arrange the atoms in a certain way, eg. you may want to create a surface slab such
that it is centered around z=0.5 (and not z=0), so that plotting programs (xcrysden) produce nicer
pictures of the structure.

For the experienced user a much more flexible (but also more complicated) tool is available, namely
the structeditor package (see Sect.9.26).

Please note: You cannot make calculations with these supercells (except for surfaces) unless you modify the
created supercell-struct file. You must break the symmetry by introducing some distortions (e.g. for a frozen
phonon) or replace one atom by an impurity/vacancy, ....

9.28.1 Execution

The program supercell is executed by invoking the command:

supercell or x supercell
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9.29 symmetso

This program helps to setup spin-orbit calculations in magnetic systems. Since SO may break
symmetry in certain spacegroups, it classifies your symmetry operations into operations A, which
do not invert the magnetization (identity, inversion, rotations with the rotation axis parallel to
magnetization), B, which invert it (mirror planes) and C, which change the magnetization in some
other way. (Note: magnetization is a result of a circular current, or equivalently, an axial vector
resulting from a vector product ẑ ∼ x̂× ŷ). symmetso will keep all A- and B-type and throw away
all C-type symmetry operations.

Finally, symmetso uses the remaining symmetry operations to check/generate equivalent atomic
positions (it can happen that some equivalent atoms become non-equivalent after inclusion of SO
interaction).

In essence, it reads your case.struct and case.inso (for the direction of magneti-
zation) files and creates an ordered case.struct orb file with proper symmetry and
equivalent atoms. In addition proper input files case.in1, case.in2, case.inc,
case.vspup/dn, case.vnsup/dn, case.clmsum, case.clmup/dn case.r2vup/dn
case.tausum/up/dn case.dmatup/dn are generated, so that you can continue with runsp
-so without any further changes.

However, please note that for certain cases (transformation from cubic to non-cubic atoms, changes
of the local rotation matrix), the non-spherical potential (case.vnsup/dn) is not fully correct in-
side the spheres and self-consistency is necessary. This is in particular important when calculating
the magnetocrystalline anisotropy using the force theorem (non-selfconsistent calculation of the
change of eigenvalues for different directions of magnetization). For these type of calculations
it is recommended to do all calculations (with and without SO) with a common low symmetry
(possibly even P1) struct file.

9.29.1 Execution

The program symmetso is executed by invoking the command:

symmetso symmetso.def or x symmetso [-c]

Usually it is called from the script init so lapw and thus needs not to be invoked manually.

9.30 Tmaker

Tmaker creates a struct-file init.struct from a file datastruct, which can be created by the
script makestruct lapw. It is executed using:

Tmaker

It was contributed by Morteza Jamal(m jamal57@yahoo.com).

9.31 Visualization

9.31.1 XCrysDen

XCrysDen [Kokalj, 2003] is a render and analysis package. It has the following features (see also
http://www.xcrysden.org/doc/wien.html):

mailto:m_jamal57@yahoo.com
http://www.xcrysden.org/doc/wien.html
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I render and analyze (distances, angles) the crystal structure
I generate k-mesh for bandstructure plots
I generate input and render 2D charge densities
I generate input and render 3D charge densities
I generate input and render Fermi surfaces
I render changes between two structures (original and relaxed) with the help of the arrows

program (see 9.5)

Figure 9.1: 3D electron density in TiC generated with XCrysDen

XCrysDen is available from:

Tone Kokalj
Jozef Stefan Institute, Dept. of Physical and Organic Chemistry
Jamova 39, SI-1000 Ljubljana, Slovenia
Tel.: +386 61 177 3520, Fax: +386 61 177 3811
Tone.Kokalj@ijs.si
http://www.xcrysden.org/

9.31.2 VESTA

VESTA (Visualization for Electronic and STructural Analysis) written by Koichi Momma and Fu-
jio Izumi is a very nice and flexible visualization program of crystal structures. It can read
case.struct and case.cif files, edit structures, write modified cif-files, display arrows and
polyhedra. It can also read case.xsf files and thus display electron densities calculated by
3ddens.

VESTA is available from:

http://jp-minerals.org/vesta/en/

9.31.3 BALSAC

balsac (Build and Analyze Lattices, Surfaces and Clusters) was written by Klaus Hermann (Fritz-
Haber Institut, Berlin). It provides high quality postscript files. In SRC balsac-utils we provide the
following interface programs to convert from WIEN2k to balsac:

I str2lat to convert case.struct to case.lat (the BALSAC ”lat” file).

mailto:Tone.Kokalj@ijs.si
http://www.xcrysden.org/
http://jp-minerals.org/vesta/en/
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I str2plt to convert case.struct to case.plt (the BALSAC ”plt” file for one unit cell).
I outnn2plt to convert case.outputnn to case.plt (the BALSAC ”plt” file for one unit

cell). You have to select one atom (central atom) and than all nn-atoms are converted into the
plt file.

I In addition converters to the xyz-format (str2xyz, outnn2xyz) for other plotting pro-
grams are also available.

For an example see figure 3.1 For scientific questions concerning BALSAC please contact Klaus
Hermann at hermann@FHI-Berlin.MPG.DE

Balsac is available from:

Garching Innovation GmbH, Mrs. M. Pasecky Hofgartenstr. 8, D-80539 Munich, Ger-
many
Tel.: +49 89 2909190, Fax.: +49 89 29091999
e-mail: gi@ipp.mpg.de
web: http://www.fhi-berlin.mpg.de/˜hermann/Balsac/

9.32 xyz2struct

xyz2struct reads the cell parameters and position of atoms from a xyz/POSCAR file and then
creates the corresponding xyz2struct.struct. Three types of xyz/POSCAR files can be read
by xyz2struct:

I 1st type:
Mo Te
1.0000000000000000 Ang

3.5473923118306230 0.0000000000000000 0.0000000000000000
-1.7736961559153115 3.0721318592349283 0.0000000000000000
0.0000000000000000 -0.0000000000000000 18.6101999999999990

1 2
Cartesian

0.0000000000000000 0.0000000000000000 9.3050999999999995
1.7736961559153113 1.0240439530783094 11.1101999999999990
1.7736961559153113 1.0240439530783094 7.5000000000000000

1st line: Symbols of the groups of atoms.
2nd line: Scaling factor of the lattice vectors and (optional) units of the lattice vectors and
position of atoms (“Ang” or “Bohr”). If no units are specified, then Å units are assumed.
3rd line: Cartesian coordinates of the lattice vector a.
4th line: Cartesian coordinates of the lattice vector b.
5th line: Cartesian coordinates of the lattice vector c.
6th line: Number of atoms in each groups (as specified in the 1st line).
7th line: Type of coordinate system that is used for the position of atoms: “Cartesian” or
“Direct” (or equivalently “Fractional”).
8th and following lines: Position of atoms.

I 2nd type (Materials Project, https://materialsproject.org/):
MoS2
1.0 Ang
3.190316 0.000000 0.000000
-1.595158 2.762894 0.000000
0.000000 0.000000 14.879004
Mo S
2 4
Direct
0.333333 0.666667 0.250000 Mo
0.666667 0.333333 0.750000 Mo
0.666667 0.333333 0.355174 S
0.333333 0.666667 0.855174 S
0.666667 0.333333 0.144826 S
0.333333 0.666667 0.644826 S

mailto:hermann@FHI-Berlin.MPG.DE
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1st line: Header (ignored).
2nd line: Scaling factor of the lattice vectors and (optional) units of the lattice vectors and
position of atoms (“Ang” or “Bohr”). If no units are specified, then Å units are assumed.
3rd line: Cartesian coordinates of the lattice vector a.
4th line: Cartesian coordinates of the lattice vector b.
5th line: Cartesian coordinates of the lattice vector c.
6th line: Symbols of the groups of atoms.
7th line: Number of atoms in each groups (as specified in the 6th line).
8th line: Type of coordinate system that is used for the position of atoms: “Cartesian” or
“Direct” (or equivalently “Fractional”).
9th and following lines: Position of atoms (the symbols of the atoms are ignored).

I 3rd type (Computational 2D Materials Database (C2DB), https://cmr.fysik.dtu.dk/
c2db/c2db.html):
3
Lattice="3.54739231183062 0.0 0.0 -1.77369615591531 3.07213185923493 0.0 0.0 0.0 18.6102" ...
Mo 0.00000000 0.00000000 9.30510000 5.75973452
Te 1.77369616 1.02404395 11.11020000 -3.32538427
Te 1.77369616 1.02404395 7.50000000 -0.00000000

1st line: Number of atoms.
2nd line: Cartesian coordinates (in Å) of the lattice vectors (inside the quotation marks after
the keyword “Lattice”).
3rd and following lines: Symbol and cartesian coordinates (in Å) of the atoms.

xyz2struct is executed with either (the xyz/POSCAR file has to be case.xyz)

x xyz2struct [-settol 1e-5]

or (the xyz/POSCAR file file can have any name)

xyz2struct < file [1e-5]

where settol (set to 1e-5 by default) determines the rounding of the position of atoms.

9.33 Unsupported software

On our website http://www.wien2k.at/reg_user you can find a link to Unsupported
software goodies, where references to various software packages are given. Most of those
packages are contributions from WIEN2k-users and you may check this site from time to time if
you find some useful tools for you.

In case you develop some goodies yourself and want to share this development with the WIEN2k
community, please send an email to peter.blaha@tuwien.ac.at and we will add it to this
page.

https://cmr.fysik.dtu.dk/c2db/c2db.html
https://cmr.fysik.dtu.dk/c2db/c2db.html
http://www.wien2k.at/reg_user
http://www.wien2k.at/reg_user/unsupported/
http://www.wien2k.at/reg_user/unsupported/
mailto:peter.blaha@tuwien.ac.at


10 How to run WIEN2k for selected
samples

Three test cases are provided in the WIEN2k package. They contain the two starting files
case.struct and case.inst and all the output so that you can compare your results with
them.

The test cases are the following (where the names correspond to what was called CASE in the rest
of this User’s Guide)

TiC
Fccni
TiO2

We recommend to run these test cases (in a different directory) and compare the output to the
provided one. All test cases are setup such that the CPU-time remains small (seconds). For real
production runs higher precision is recommended (the value of RKMAX in case.in1 must be
increased and a better (denser) k-mesh should be used).

In addition we provide a subdirectory example struct files were various more complicated
struct files can be found.

10.1 TiC

The TiC example is described in detail in chapter 3 (Quickstart).

10.2 Fcc Nickel (spin polarized)

Ferromagnetic Nickel is a test case for a spin-polarized calculation. Ni has the atomic configuration
1s2, 2s2, 2p6, 3s2, 3p6, 3d8, 4s2 or [Ar] 3d8, 4s2. We treat the 1s, 2s, 2p and 3s as core states, and 3p
(as local orbital), 3d, 4s and 4p are handled as valence states. In a spin-polarized calculation the file
structure and the sequence of programs is different from the non-spin-polarized case (see 4.5.2).

Create a new session and its corresponding directory. Generate the structure with the following
data (we can use a large sphere as you will see from the output of nn):
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Title fcc Ni
Lattice F
a 6.7 bohr
b 6.7 bohr
c 6.7 bohr
α, β, γ 90
Atom Ni, enter position (0,0,0) and RMT (3 % reduction)

Initialize the calculation using spin-polarization and the default precision. It leads to RKmax=7.5
and a 173 k-mesh. (A ferromagnetic metal needs many k-points to yield reasonably converged
magnetic moments).

Start the scf cycle (runsp lapw) with ”-cc 0.0001” (in particular for magnetic systems charge con-
vergence is often the best choice). At the bottom of the converged scf-file (Fccni.scf) you find
the magnetic moments in the interstital region, inside the sphere and the total moment per cell
(only the latter is an “observable”, the others depend on the sphere size).

:MMINT: MAGNETIC MOMENT IN INTERSTITIAL = -0.03288
:MMI001: MAGNETIC MOMENT IN SPHERE 1 = 0.66671
:MMTOT: TOTAL MAGNETIC MOMENT IN CELL = 0.63383

Save the calculation using save lapw prec1.

Make another initialization with -prec 2 and -nodstart. Since this is now a very dense k-mesh
and the calculation will take some time, we run the scf cycle in k-parallel mode (runsp lapw -p
-cc 0.0001) with the following .machines file (assuming we have a 8 core machine):

1:localhost
1:localhost
1:localhost
1:localhost
omp_global:2

The resulting moments are now very well converged and change to:

:MMINT: MAGNETIC MOMENT IN INTERSTITIAL = -0.03331
:MMI001: MAGNETIC MOMENT IN SPHERE 1 = 0.68115
:MMTOT: TOTAL MAGNETIC MOMENT IN CELL = 0.64784

Save the calculation under the name prec2.

10.3 Rutile (TiO2)

This example shows you how to “optimize internal parameters” and do a k-point parallel calcula-
tion in 3 different ways.

10.3.1 using w2web and the recommended MSR1a minimization

Create a new session and its corresponding directory. Generate the structure with the following
data (reduce the RMT by 3 %. Note: the O sphere will be made smaller than that of Ti because Ti-d
states are harder to converge then O-p):

Title TiO2
Spacegroup P42/mnm (136)
a 8.682 bohr
b 8.682 bohr
c 5.592 bohr
α, β, γ 90
Atom Ti, enter position (0,0,0)
Atom O, enter position (0.3,0.3,0)
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StructGen will automatically add the equivalent positions.

Initialize the calculation using -prec 1n (”n” because we know it is an insulator). It will set
RKmax=6.17 and produce 9 k-points in the IBZ.

If you have more cpus available (a multi-core machine or, very efficiently, couple several PCs with a
common NFS filesystem to your own cluster, for details see 5.5), you can use “Executiono Run scf”,
activate the “parallel” button” and “start scf” in w2web. This will create and open a .machines
file and you should insert lines with the proper names of your PCs (or use 3 lines with 1:localhost;
we use 3 processors since we have 9 k-points ). Save this file and click on “Execution o Run scf”,
activate “-fc 1.0” for force-convergence and “start scf” to submit the scf-cycle.

During the scf-cycle monitor tio2.dayfile and check convergence (:ENE, :DIS, :FGL002), either
using “Utils/Analysis” in w2web. You should see some convergence of :FGL002 and then a big
jump in the final cycle, when the valence-force corrections are added. Only the last force (including
this correction) is valid.

Since this force is quite large, you should first ”save” the calculation (”starting structure”) and then
optimize the position of the O-atom:

Start the structure minimization in w2web using “Execution o mini.positions”. This will generate
TiO2.inM, and you should use the recommended procedure using "MSR1a". Follow the instruc-
tions.

Watch the minimization (:ENE, :FR, :FGL002, :POS002) using the file TiO2.scf, which contains
the history of all steps (see also Sec.5.3.2). Since we change positions and density simultaneously,
it will take more steps and the forces may oscillate a lot, but as long as :ENE goes down, it is fine.
Once the forces are 3 times below TOLF, MSR1a mode will be switched to MSR1 and a normal scf
cycle wil continue until the convergence criteria are met.

The final structural parameter of the O-atom should be close to x=0.304, which compares well with
the experimental x=0.305.

Save relaxed structure.

10.3.2 PORT minimization

Alternatively you can also try option PORT with tolf=1.0 (instead of 2.0), otherwise stay with the
default parameters. Create a new session (and case) and repeat the steps above. Then start the
minimization.

This will create TiO2.inM automatically, call the program min, which generates a new struct file
using the calculated forces, and continues with the next scf cycle. It will continue until the forces
are below 1 mRy/bohr (TiO2.inM). The final results are not “saved” automatically but can be found
in the “current” calculation.

You should watch the minimization (:ENE, :FGL002, :POS002) using the file TiO2.scf mini,
which contains the final iteration of each geometry step (see also Sec.5.3.2). If the forces in this
file oscillate from plus to minus and seem to diverge, or if they change very little, you can edit
TiO2.inM (change the method, reduce or increase the stepsize), and remove TiO2.tmpM (con-
tains the “history” of the minimization and is used to calculate the velocities of the moving atoms).
(This should not be neceaasry for the rutile example, but may occur in more complex minimiza-
tions. See comments in Sec. 5.3.2).

10.3.3 Command line usage:

Once you gain experience, the command line interface of WIEN2k is much more powerful and
faster to use. Here we provide a first example:
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mkdir TiO2; cd TiO2 # create a new directory and change into it.
makestruct # enter the necessary data similar as above
cp init.struct TiO2.struct
init_lapw -prec 1n
cp $WIENROOT/SRC_templates/.machines . # and edit this file accordingly
run_lapw -p -fc 1 # scf cycle with fixed positions
save_lapw starting_structure
run_lapw -p -min -fc 1 -cc 0.0001 # scf cycle optimizing positions (MSR1a)
save_lapw relaxed_structure

Now analyze the results using the Linux command grep and a WIEN2k aliases grepline:

grep :ENE relaxed_structure.scf # check convergence
grep :FGL002 relaxed_structure.scf
grep :POS002 relaxed_structure.scf
grepline :ENE ’*scf’ 1 # compare original and relaxed structure
grepline :FGL002 ’*scf’ 1
grepline :POS002 ’*scf’ 1

10.4 Supercell calculations on TiC

This example shows you how to create a supercell of TiC, which could be used to simulate a TiC-
surface or vacancies, impurities or core-holes for X-ray absorption / ELNES spectroscopy. I’ll de-
scribe the procedure using Unix and WIEN2k commands in an xterm, but of course you can do the
same in w2web.

Create a new directory, copy the original TiC struct file into it and run supercell program:

mkdir super
cd super
cp ../TiC/TiC.struct .
x supercell

Specify “TiC.struct”, a “2x2x2” supercell, “F” lattice (this will create a cell with 16 atoms, you can
also create 32 or 64 atom cells using B or P lattice type. Note: surfaces require a P supercell).

cp TiC_super.struct super.struct

and edit this file to make some changes. You could eg.

I delete an atom (to simulate a vacancy)
I replace an atom by another element (impurity)
I “label” an atom (put a 1 in the 3rd column next to the element name) to make this atom

unique (needed eg. for core-holes)
I displace an atom (for phase transitions or phonons)

Note: it is important to make at least one of these chages. Otherwise the initialization will restore the original
unit cell (or the calculations will fail later on because symmetry is most likely not correct)

In our example we will simulate a C vacancy and remove the last C atom (number 16) and change
the total number of atoms (2nd line) to 15.
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I x nn. You will see a complain about equivalent atoms and a new struct file has been gen-
erated with only 4 non-equivalent atoms. Accept the automatically generated struct file (cp
super.struct nn super.struct) and continue.

I x sgroup. Inspect super.outputsgroup. You will see that it complains about
this structure and a new one has been generated. Compare super.struct and
super.struct sgroup. What has been changed ? Accept the automatically generated
struct file (cp super.struct sgroup super.struct).

I x symmetry. Inspect super.outputs. As expected, there are no problems anymore, we
have produced a struct file with the correct symmetry and can continue with the initialization.
Note that atom 2 has point group 4/mm and a non-trivial ”local rotation matrix”, which
rotates the axes such that the 4-fold rotation axis becomes z. In addition, this site has a free
position parameter and the Ti atoms can move towards/away from the C vacancy.

I init lapw

For a “core-hole” calculation you would ”label” the last atom as ”C 1” and run the same steps
as above. Then edit super.inc and remove one core electron from the desired atom and state
(1s from the ”C 1” atom). In addition you should add the missing electron either in super.inm
(background charge) or super.in2 (add it to the valence electrons). In the latter case, you should
remove this extra electron AFTER scf and BEFORE calculation of the spectra.

Once this has been done, you could start a scf-cycle (for impurities, vacancies,.. you should most
likely also optimize the internal positions).

10.5 Further examples

Further examples can be found on our web-site in the workshops section:

http://www.wien2k.at/events,

in particular in the exercises description at the latest workshops

http://www.wien2k.at/events
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11.1 Requirements

WIEN2k is written in FORTRAN 90 and requires a Linux/UNIX operating system since the pro-
grams are linked together via C-shell scripts. It has been implemented successfully on Intel or
AMD based computer systems, starting from Laptops, PCs, workstations and high performance
clusters running under Linux, (IBM RS6000), and on Macs. Hardware requirements will change
from case to case (small cases with 60 atoms per unit cell can be run on almost any PC/laptop
under Linux), but we recommend a more powerful multi-core (“latest generation”) Intel-I7 (I9) PC
with at least 32 GB) memory and plenty of disk space (1-2 TB).

For OpenMP and coarse grain parallization on the k-point level, a cluster of (fairly cheap) PCs with
Gb Ethernet is sufficient. Faster communication (Infiniband) is needed for the fine grain (single k-
point) mpi-parallel version and typical then expensive Intel Xeon nodes are used. Note, that a good
Intel I7 (I9) processor often has a better single core performance than expensive Xeons nodes, and
thus has (at least for small/medium sized cases) the far best price/performance ratio.

For Intel (AMD) based systems we recommend the Intel ifort compiler and the Intel
mkl library (which includes blas, lapack and Scalapack) (see http://www.intel.com). If
you have installed ifort yourself on your local PC, don’t forget to configure your environment
properly. For Intels Parallel Studio add some thing like:

source /opt/intel/.../bin/compilervars.sh intel64

to your .bashrc file or for Intels oneAPI:

source /opt/intel/oneapi/setvars.sh

When you have the necessary hardware, you can also install the mpi-version and the most easy
compilation is with Intel-mpi (included in Intels oneAPI) or opnMPI.

A free but decent alternative for compiler and library is using gfortran (at least version 6 or
higher) and the OpenBlas-library, which should be available in any modern Linux distribution.
In addition OpenMPI or mpich is necessary for the mpi-version.

257
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In order to use all options and features (such as the graphical user interface w2web or some of
its plotting tools) the following public domain program packages in addition to a F90 compiler +
BLAS/Lapack library must be installed:

I ifort+mkl or gfortran+openblas
I FFTW3 (mandatory since WIEN2k 21 for both, sequential and fine grain mpi-parallelization)
I perl 5 or higher (for w2web only)
I tcsh
I Linux tools like gcc, bc, make, awk
I emacs or another editor of your choice (vi, gedit, ...)
I ghostscript (with jpg support)
I gnuplot (with png support)
I www-browser
I pdf-reader (okular, evince, xpdf, ...)
I XCrysDen for visualization, highly recommended
I VESTA for visualization, highly recommended
I Tcl/Tk-Toolkit (for Xcrysden only)
I Xmgrace (only for optional plotting)
I Octave (only for the structeditor)
I Python + numPy (only for BerryPI and mstar)
I MPI (ONLY for fine grain mpi-parallelization, Intel-MPI, OpenMPI or mpich)
I SCALAPACK (ONLY for fine grain mpi-parallelization)
I ELPA (ONLY for fine grain parallelization, optional, but highly recommended since ELPA is

2 times faster than SCALAPACK)
I LIBXC (ONLY when using special, non-standard DFT approximations or gKS (scf) meta-GGA

calculations or for the stress tensor)

The script check minimal software requirements.sh checks if it can find the necessary
(and optional) software.

Usually these packages should be available on modern systems. If one of these packages is not
available it can either be installed from the Linux distribution, from public domain sources (ask
your computing center, use the WWW to search for the nearest location of these packages) or the
corresponding configuration may be changed (e.g. using vi instead of emacs). Brief installation
instructions for some packages are given below.

11.1.1 Installation tips for fftw3, ELPA and LIBXC

Most importantly, fftw3, ELPA and LIBXC must be installed with the same FORTRAN compiler
that you will use for WIEN2k. These libraries may be already available in your Linux distribution,
but most likely ONLY work with gfortran, not with Intels ifort.

ELPA

ELPA is ONLY necessary if you plan to use the mpi-version of WIEN2k (and have the correspond-
ing hardware). It is NOT necessry for an installation on a single PC. The following should install
ELPA, asuming that you have ifort and mkl (Intels OneAPI), OpenMPI and use the default gcc
compiler.

I cd ”elpa-directory”
I git clone https://github.com/marekandreas/elpa
I autogen.sh
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I configure FC=mpifort SCALAPACK LDFLAGS=”-L$MKLROOT/lib/intel64 -
lmkl scalapack lp64 -lmkl intel lp64 -lmkl sequential -lmkl core -lmkl blacs openmpi lp64
-lpthread -lm -ldl -liomp5 -Wl,-rpath,$MKLROOT/lib/intel64” SCALAPACK FCFLAGS=”-
L$MKLROOT/lib/intel64 -lmkl scalapack lp64 -lmkl intel lp64 -lmkl sequential -
lmkl core -lmkl blacs openmpi lp64 -lpthread -lm -I$MKLROOT/include/intel64/lp64”
−−prefix=/pathname/elpa-2022.05.001 FCFLAGS=-O3 CFLAGS=-O3 -mfma -funsafe-loop-
optimizations -funsafe-math-optimizations -ftree -vect-loop-version -ftree-vectorize
Optionally you could add: −−enable-avx512 or/and −−enable-openmp when you have the
corresponding hardware,
specify the proper mpi-compiler name: FC=mpifort,
where pathname is the path you want to install elpa (when you are root eg. /opt; otherwise
eg. your home-directory), you will have to specify this path again in the LDFLAGS),
replace -lmkl blacs openmpi lp64 by -lmkl blacs intelmpi lp64 if you use Intel-mpi.

I make
I make install

Please note, the ELPA interface has changed for ELPA-versions 2017 and later. Both interfaces are
included in WIEN2k, but you have to select -DELPA (newer versions) or -DELPA15 in the Makefile
of lapw1 (or during siteconfig lapw). Please refer to the ELPA documentation for additional
information regarding openMP support and other options!

fftw

fftw is now mandatory, both for the sequential and mpi-parallel version.

I Download the fftw-3.3 sources from http://www.fftw.org/download.html

– Please note, the fftw-3.x versions are incompatible with fftw-2.x and fftw-2 is no longer
supported in WIEN2k

I unzip and untar the downloaded file
I Change into the expanded directories and configure the compilation.

– Define your fortran compiler in the variables F77 (setenv F77 ifort, or export F77=ifort)
– Use “./configure −−prefix=/pathname −−enable-openmp” to configure compilation.
– If you want to use also the mpi-version of WIEN2k, add the “−−enable-mpi“ switch to

the line above.

I make
I make install (if you specified a “system-directory” like /usr/local you must have proper

permissions for this step, eg. become root user)

Optionally, one can also use in the sequential (non-mpi) version of lapw0 and lapw2 the MKL-
fftw3 routines, not the self-compiled fftw3-binaries, which are a bit fister. This may speedup the
fft-parts of these programs a bit, but overall it is probably not worth the effort, in particular since
one cannot use the mkl-version with mpi.

Installation of LIBXC

In order to use the library of exchange and correlation functionals LIBXC [Marques et al., 2012,
Lehtola et al., 2018], you need to install it and recompile lapw0. LIBXC is required for both, gKS
meta-GGA calculations and the stress tensor. The steps are the following:

I Download LIBXC (the most recent version, at least 5.2.3, for libxc-5.0.0 the corresponding
versions in SRC lapw0: libcx.F libxc5.0, libxc mod.F libxc5.0 and inputpars.F libxc5.0 must
be copied to the defult names) from http://www.tddft.org/programs/libxc/download

http://www.fftw.org/download.html
http://www.tddft.org/programs/libxc/download
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I Compile LIBXC with the same compiler that was used to compile WIEN2k. The basic steps
are the following (example with ifort):

– cd libxc-5.2.3/
– ./configure FC=ifort --prefix=$LIBXCDIR
– make
– make check
– make install

where LIBXCDIR is the directory where you choose to put the library and modules of LIBXC.

Then, lapw0 needs to be recompiled with additional options and flags in the Makefile (it can be
set automatically in siteconfig):

I specify LIBXCDIR
I -I$(LIBXCDIR)/include/ -DLIBXC added to FOPT and FPOPT
I -L$(LIBXCDIR)/lib64/ -lxcf03 -lxc added to LDFLAGS

Note that at the end of the compilation, the file $WIENROOT/SRC lapw0/xc funcs.h should be
present.

11.2 Installation of WIEN2k

11.2.1 Check the software requirements

The script check minimal software requirements.sh checks if it can find the necessary
(and optional) software. PLEASE NOTE: It does not make sense to continue when NECESSARY
software (tcsh, fortran compiler (ifort or gfortran), FFTW3, make, bc) is not on your system.

11.2.2 Expanding the WIEN2k distribution

The WIEN2k package comes as a single tar file (or you can download about 50 individual tar
files separately), which should be placed in a subdirectory which will be your $WIENROOT di-
rectory (e.g. ./WIEN2k). In addition you can download three examples, namely TiC.tar.gz,
TiO2.tar.gz and Fccni.tar.gz, although they might not be up-to-date.

Uncompress and expand all files using:

tar -xvf wien2k XX.tar (skip this if you downloaded files separately)
gunzip *.gz
chmod +x ./expand lapw
./expand lapw

You should have gotten the following directories:

./SRC
SRC_2DRoptimize
SRC_3ddens
SRC_afminput
SRC_afmsim
SRC_aim
SRC_animxsf
SRC_arrows
SRC_balsac-utils
SRC_BerryPI
SRC_broadening
SRC_cif2struct
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SRC_clmaddsub
SRC_clmcopy
SRC_dipan
SRC_dstart
SRC_elast
SRC_eosfit
SRC_eosfit6
SRC_filtvec
SRC_fsgen
SRC_Globals
SRC_hf
SRC_initxspec
SRC_IRelast
SRC_irrep
SRC_joint
SRC_kgen
SRC_kram
SRC_lapw0
SRC_lapw1
SRC_lapw2
SRC_lapw3
SRC_lapw5
SRC_lapw7
SRC_lapwdm
SRC_lapwso
SRC_lcore
SRC_lib
SRC_lorentz
SRC_lstart
SRC_mini
SRC_mixer
SRC_mstar
SRC_nlvdw
SRC_nmr
SRC_nn
SRC_optic
SRC_optimize
SRC_orb
SRC_pairhess
SRC_pes
SRC_phonon
SRC_qtl
SRC_reformat
SRC_rendos
SRC_sgroup
SRC_spacegroup
SRC_spaghetti
SRC_structeditor
SRC_sumhfpara
SRC_sumpara
SRC_supercell
SRC_symmetry
SRC_symmetso
SRC_telnes3
SRC_templates
SRC_tetra
SRC_Tmaker
SRC_trig
SRC_txspec
SRC_usersguide_html
SRC_vecpratt
SRC_w2w
SRC_w2web
SRC_wplot
example_struct_files
TiC
TiO2
fccni

Thus, each program has its source code (split into several files) in its own subdirectory. All pro-
grams are written in FORTRAN90 (except SRC sgroup and SRC reformat, which are in C).

/SRC contains the users guide (in form of a postscript file usersguide.ps and as pdf-file
usersguide.pdf), all c-shell scripts and some auxiliary files.

/SRC usersguide html contains the html version of the UG.

/Fccni, /TiC and /TiO2 contain three example inputs and the respective outputs.
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/example struct files contains a collection of various struct files, which could be of use espe-
cially for the less experienced user.

/SRC templates contains various input templates.

In addition to the expansion of the tar-files ./expand lapw copies also all csh-shell scripts from
/SRC to the current directory and creates links for some abbreviated commands.

11.2.3 Site configuration for WIEN2k

At the end of expand lapw you will be prompted to start the script

./siteconfig lapw

When you start this script for the first time (file WIEN2k INSTALLDATE not present), you will be
guided through the setup process.

Later on you can use siteconfig lapw to redimension parameters, update individual packages
and recompile the respective programs.

During the first run, you will be asked to specify:

I your system; we support directly ifort+mkl (with/without SLURM) and gfortran+OpenBlas.
I your FORTRAN90 and C compilers;
I your compiler and linker options as well as the place for LAPACK and BLAS libraries. For

the standard systems we have included some recommended compiler and linker options,
which are known to work on our systems and you can probably accept all recommendations
( see also sec. 11.2.5). This generates Makefiles from the corresponding Makefile.orig in all
subdirectories.

I configuration of parallel execution will ask whether your system is shared memory only (use
this ONLY if you have only ONE shared memory computer), so that default parameters can
be set accordingly ( $WIENROOT/parallel options is the file where this information is
stored).

I to configure parallel execution for distributed systems, specify the command to open a remote
shell, which on most systems is ssh.

I You will then be asked wether you want to run fine-grained mpi-parallel. This is only possi-
ble if FFTW, MPI, SCALAPACK (both are included in Intels openAPI) and, optionally, ELPA
are installed on your system and requires a fast network (infiniband) or a large shared mem-
ory machine. It pays off only for bigger cases (more than 30 atoms, matrixsize > 5000).

I You should define NMATMAX, i.e. the maximum matrixsize (number of basis functions).
This value should be adjusted according to the memory of your hardware. Rough estimates
are:
NMATMAX=10000 ==> 1 GB (real, i.e. with inversion symmetry)
NMATMAX=30000 ==> 10 GB (real) (==> cells with about 80-150 atoms/unitcell)
If you choose it too large, lapw1 will start to “page” leading to inacceptable performance or
a crash. Please note: when running N k-point parallel jobs on a single PC, you need N-times
this memory. In addition, NMATMAX will be automatically recuced (by

√
2) for complex

(without inversion) cases and increased by
√
NPE for mpi-parallel cases, where NPE is the

number of mpi-parallel cores.
I Then you are prompted to compile all programs (this will be done using make) and the exe-

cutables are copied to the $WIENROOT directory. Compilation might take quite some time.
I During compilation watch for error messages on the screen. If there are errors, you may need

to change into the corresponding SRC * directory and examine file compile.msg for details.
Common errors are wrong specification of compiler, linking or library options. In such cases,
adopt the Makefile in this directory and recompile using make. Once you have proper op-
tions, correct them globally in siteconfig lapw and recompile.
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Later on you can use siteconfig lapw to change parameters, options or to update a pack-
age. Additionally, you can change all specified options (compiler, paths, libraries,...) manually
- siteconfig lapw saves them in the following files:

I WIEN2k VERSION: Contains the version of your WIEN2k installation
I WIEN2k COMPILER: Contains the chosen FORTRAN- and C-compiler, and, optionally, a MPI-

compiler.
I WIEN2k MPI: Contains only one single keyword (MPI), if you specified that you want to run

parallel calculations and directs siteconfig to compile (create) the mpi-versions too.
I WIEN2k OPTIONS: Contains all options needed to compile the programs of WIEN2k (paths

to libraries, library names, preprocessor switches,...).
I WIEN2k parallel options: Contains all options needed for parallelization
I WIEN2k SYSTEM: Contains the specified system you run your calculations on.
I WIEN2k INSTALLDATE: Contains the timestamp of your installation of WIEN2k (the first

time you ran siteconfig lapw. If you remove this file, siteconfig will fall back into the
“first-time” installation mode and restart with siteconfigs defaults (ignoring previous set-
tings).

11.2.4 User configuration

Each WIEN2k user should run the script userconfig lapw. This will setup a proper environment.

The script userconfig lapw will do the following for you:

I set a path to WIEN2k programs
I set the stacksize to “unlimited”
I add aliases
I defines environment variables ($WIENROOT, $SCRATCH, $OMP NUM THREADS)

to your ˜/.cshrc or˜/.bashrc file.

We recommend in particular to set:
$OMP NUM THREADS to 2 or 4 (assuming you have a 4 core processor). Don’t set it larger than 8,
even when you have many more shared memory cores;
$SCRATCH to a local directory (and not your NFS-mounted home-directory) to reduce network
traffic.

Optionally you may need to edit these files and set the $LD LIBRARY PATH variable (path where
compiler-libs or blas-libraries are located).

Note: This will work only when the csh, tcsh or bash-shell is your login shell. Depending on your settings
you may have to add similar lines also in your .login file. If you are using a different login-shell, edit your
startup files manually.

11.2.5 Performance and special considerations

The script siteconfig lapw is provided for general configuration and compilation of the
WIEN2k package. When you call this script for the first time and follow the suggested answers,
WIEN2k should run on your system (see 11.2.3).

The codes in the individual subdirectories /SRC program are compiled using make. The file
Makefile is generated during installation using Makefile.orig as template.

In some directories the source files *.frc, *.F and param.inc r/c contain both, the real and
complex (for systems without inversion symmetry) version of the code. You create the corespond-
ing versions with make and make complex, respectively. (The *.frc and *.F files will then be
preprocessed automatically).
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The fine-grained parallel versions lapw0 mpi; lapw1 mpi, lapw1c mpi, lapw2 mpi,
lapw2c mpi are created using make para (lapw0) and make rp; make cp. make all
produces all available executables.

Most of the CPU time will be spent in lapw1 and (to a smaller extent) in lapw2 and lapw0,
except for hybrid-DFTcalculations, where 90 % of the time goes into the hf program. Therefore we
recommend to optimize the performance for these 3 programs:

I Find out which compiler options (man ‘‘name of compiler’’) make these programs run
faster. You could specify a higher optimization (-O3), or specify a particular processor archi-
tecture (like AVX512 or -qarch=pwr5 or -R10000, ....).

I Good performance depends on highly optimized BLAS (and much less on LAPACK)
libraries. Whenever possible, replace the supplied libraries (SRC lib/blas lapw
SRC lib/lapack lapw), by routines from your vendor (mkl for Intel or AMD processors,
aclm for AMD, essl for IBM) or use the optimized Linux OpenBlas ). Because of the superior
performance of the Intel-mkl library we recommend ifort/mkl instead of gfortan (or some
other commercial f90 compiler). If such libraries are not available use the OpenBLAS-library
(http://www.openblas.net/), which is available on modern Linux versions.

11.2.6 Global dimensioning parameters

WIEN2k is written in Fortran 90 and all important arrays are allocated dynamically. The only im-
portant parameters left are NMATMAX and NUME, specifying the maximum matrixsize (should
be adjusted to the memory of your hardware, see above) and the maximum number of eigenvalues
(must be increased for unitcells with large number of electrons)

Some less important parameters are still present and described in chapter “dimensioning parame-
ters” of the respective section in chapter 6.

We recommend to use siteconfig lapw for redimensioning and recompilation. In order to work
properly, the parameter XXXX in the respective param.inc files must obey the following syntax:

PARAMETER(XXXX= ....)

Note: between “(”, XXXX and “=” there must be no space.

11.3 Installation and Configuration of w2web

11.3.1 General issues

w2web requires perl, which should be available on most systems. (If not contact your system
administrator or install it yourself from the WWW)

When you start w2web for the first time on the computer where you want to execute WIEN2k (you
may have to telnet, ssh,.. to this machine) with the command w2web [-p xxxx], you will be
asked for a username/password (I recommend you use the same as for your UNIX login).

You must also specify a “port” number (which can be changed the next time you start w2web).
If the default port (7890) used to serve the interface is already in use by some other process,
you will get the error message w2web failed to bind port 7890 - port already in
use!. Then you will have to choose a different port number (between 1024 and 65536) . Please
remember this port number, you need it when connecting to the w2web server.

Note: Only user root can specify port numbers below 1024!

http://www.openblas.net/
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Once w2webhas been started, use your favorite WWW-browser to connect to w2web, specifying
the correct portnumber, e.g. firefox http://hostname where w2web runs:7890

On certain sites a firewall may block all high ports and one cannot connect to this machine. In these
cases you can create a ssh-tunnel using the following commands:

At your “local host” (the PC in front of you) connect to the “w2web host” (where you started
w2web) using

ssh -fNL 2000:w2web_host:7890 user@w2web_host

On your local host use a web browser and connect with: firefox http:127.0.0.1:2000.

Using “Configuration ” you can further tailor the behaviour according to your wishes. In particular
you can define new “execution types” to adjust to your queuing system.

For example the line

batch=batch < %f

defines an execution type “batch” using the UNIX batch command. (w2web collects its commands
in a temporary script and you can access it using %f).

If you run on a machine with a queuing system (like loadleveler, sun-grid-engine, or pbs) you may
define an “execution type”

qsub=cat %f > w2web-job;qsub-wienjob_lapw

The following scripts may serve as templates: qsub-wienjob lapw in $WIENROOT needs a
master-job-template qsub-job0 lapw and examples for loadleveler and SGE are provided in
$WIENROOT (you may need to adapt them ! Other examples you can find on our FAQ-page on
the web). Of course, with some small modifications you can define several “execution types” with
eg. different number of processors or mpi vs. k-point parallel runs,....

w2web saves several variables in startup files which are in the (˜/.w2web) directory.

11.3.2 How does w2web work?

w2web acts like a normal web-server - except that it runs on a ”user level port” instead of the
default http-port 80. It serves html-files and executes perl-scripts or executes system or user com-
mands on the server host.

11.3.3 w2web-files in you home directory

w2web creates on the first start of w2web on host “hostname” the directory .w2web/hostname
in your home directory with the following content:

I .w2web/hostname/conf
I .w2web/hostname/logs
I .w2web/hostname/sessions

11.3.4 The configuration file conf/w2web.conf

In this file various configuration parameters are stored by w2web. To restrict the access to certain
IP addresses you can add lines like:

deny=*.*.*.*
allow=128.130.134.* 128.130.142.10
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11.3.5 The password file conf/w2web.users

This file is created during the first run of w2web.

If you remove this file, the next start of w2webwill activate the installation procedure again.

11.3.6 Using the https-protocol with w2web

In order to use the https-protocol the perl-library Net::SSLeay in addition to the OpenSSL package
must be installed on your system. Both are freely available.

Then you must include a line with ssl=1 in w2web.conf.

If you run w2web-server in ssl-mode you need a site certificate for your server. You may
use the supplied certificate in $WIENROOT/SRC w2web/bin/w2web.pem (copy this file to your
conf-directory and set the keyfile=∼/.w2web/<hostname>/conf/w2web.pem line in your
w2web.conf).

This certificate will not expire until 2015, but usually browsers will complain that they do not know
the Certificate Authority who issued this certificate - if you don’t like this message, you must buy
a certificate from VeriSign, Thawte or a similar CA.

Of course you must connect to https: instead of http:, i.e. use:

firefox https://hostname where w2web runs:7890.

11.4 Environment Variables

WIEN2k uses the following environment variables set in your .cshrc/.bashrc file (by
userconfig lapw):

WIENROOT base directory where WIEN2k is installed
PDFREADER specifies program to read pdf files (acroread, xpdf,...)
SCRATCH directory where case.vector and case.help?? are stored. On slow NFS-

filesystems, a “local” scratch-directory could greatly enhance the performance.
EDITOR path and name of your prefered editor
STRUCTEDIT PATH path where the structeditor tool is located
OCTAVE PATH path where the structeditor tool is located
OCTAVE EXEC PATH path where octave looks for executables (structeditor)
XCRYSDEN TOPDIR if this variable is set WIEN2k will activate all interface extensions to XCrys-

Den.
OMP NUM THREADS [1—2—4] on multi-core machines for parallelization using OpenMP and

in certain libraries (mkl).

The following variables are stored in $WIENROOT/parallel options (created by
siteconfig lapw

USE REMOTE [0|1] determines whether parallel jobs are run in background (on shared memory
machines) or using ssh. It is usually set in $WIENROOT/parallel options

MPI REMOTE [0|1] determines whether the mpirun command is issued on the “master-node”, or
first an ssh to a remote node is done and there the mpirun command is issued. Usually, on
many mpi-2 systems the first method is preferred, on mpi-1 the second.

WIEN GRANULARITY Default granularity for parallel execution. It is overridden by setting the
granularity in the .machines
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WIEN EXTRAFINE if set, the residual k-points are spread one by one over the processors.
TASKSET [no|command] specifies an optional command for binding a process to a specific core

(like: taskset -c)
WIEN MPIRUN is used to define the command to launch mpi-parallel calculations. This variable

is set in $WIENROOT/parallel options and usually is set to:
”mpirun− np NP −machinefile HOSTS EXEC ”.
In SLURM batch systems you may want to use:
”srun−K −N nodes−n NP − r offset PINNING EXEC ” and define in addition:

CORES PER NODE (eg. 16 if you have 16 core nodes).
PINNING COMMAND (eg ’–cpu bind=map cpu:’).
PINNING LIST (eg. ”0,8,1,9,2,10,3,11,4,12,5,13,6,14,7,15” on a 16 core machine). NOTE that for

srun only commensurate grids are supported at the moment (i.e., the number of processes of
your grid is a multiple or - in case of small grids - a divisor of your CORES PER NODE).

In addition on some systems useful variables are:

LD LIBRARY PATH path to libraries of compiler and math-libs
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12 Trouble shooting

In this chapter hints are given for solving some difficulties that have occurred frequently. This
chapter is by no means complete and the authors would appreciate further suggestions which
might be useful for other users. Beside the printed version of the users guide, an online pdf ver-
sion is available using help lapw. You can search for a specific keyword (use ∧f keyword) and
hopefully find some information.

There is a mailing list for WIEN2k related questions. To subscribe
to this list goto:
http://www.wien2k.at/reg_user/mailing_list/
and subscribe. You will then automatically be added to the mail-
ing list
wien@theochem.tuwien.ac.at
and can post questions. Please make use of this list!

If an error occurs in one of the SCF programs, a file program.error is created and an error message
is printed into these files. The run lapw script checks for these files and will automatically stop if
a non-empty error file occurs.

Check the files case.dayfile (which is written by init lapw and run lapw), :log (where a
history of all commands using x is given) and *.error for possible explanations.

In several places the dimensions are checked. The programs print a descriptive error message and
stop.

case.outputnn: This file gives error messages if the atomic spheres overlap. But it should also
be used to check the distances between the atoms and the coordination number (same dis-
tance). If inconsistencies exists, your case.struct file may contain an error. A check for
overlapping spheres is also included in mixer and lapw1.

case.outputd: Possible stops or warnings are:
“NO SYMMETRY OPERATION FOUND IN ROTDEF“: This indicates that in your

case.struct file either the positions of equivalent atoms are not specified correctly
(only positive coordinates allowed!!) or the symmetry operations are wrong.

case.output1: Possible stops or warnings are:

“NO ENERGY LIMITS FOUND IN SELECT“: This indicates that Etop or Ebottom could not
be found for some ul(r, El). Check your input if it happens in the zeroth iteration. Later,
(usually in the second to sixth iteration) it may indicate that in your SCF cycle something
went wrong and you are using a crazy potential. Usually it means that mixing of the
charge densities was diverging and large charge fluctuations occured. Check previous
charges for being physically reasonable (grep for labels :NTOxx :CTOxx :DIS :NEC01).
Usually this happens when your input is not ok, or for very ill conditioned problems
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(very rare), or more likely, when “Ghostbands” appeared (or some states were miss-
ing) because of bad energy parameters in case.in1. You will probably have to delete
case.broy* and case.scf, rerun x dstart and then change some calculational pa-
rameters. These could be: fixing some energy parameter (modify both, case.in1 and
case.in1 orig or try the -in1orig switch if you have used -in1new); switch to a broad-
ening method (TEMP with eg. 0.010 mRy); or increase the k-mesh (magnetic metals); or
reduce the mixing parameter in case.inm slightly (eg. to 0.1). In very difficult (mag-
netic) cases a PRATT mixing with eg. 0.01 mixing might be helpful at the beginning of
the scf cycle (but later switch to MSEC1 again) !

“STOP RDC 22“: This indicates that the overlap matrix is not positive definite. This usually
happens if your case.struct file has some error in the structure or if you have an
(almost) linear dependent basis, which can happen for large RKMAX values and/or if
you are using very different (extremely small and large) sphere radii RMT .

“X EIGENVALUES BELOW THE ENERGY emin“: This indicates that X eigenvalues were
found below emin. Emin is set in case.in1 (see sec. 7.6.3) or in case.klist gener-
ated by KGEN, see 6.3, 6.5). It may indicate that your value of emin is too high or the
possibility of ghostbands, but it can also be intentional to truncate some of the low lying
eigenvalues.

If you don’t find enough eigenvalues (e.g.: in a cell with 4 oxygens you expect 4 oxygen
s bands at roughly -1 Ry) check the energy window (given at the end of case.in1)
and make sure your energy parameters are found by subroutine SELECT or set them by
hand at a reasonable value.

case.output2: Possible stops or warnings are:

“CANNOT BE FOUND“: This warning, which could produce a very long output file, in-
dicates that some reciprocal K-vector would be requested (through the k-vector list of
lapw1), but was not present in the list of the K generated in lapw2. You may have
to increase the NWAV, and/or KMAXx parameters in lapw2 or increase GMAX in
case.in2. The problems could also arise from wrong symmetry operations or a wrong
structure in case.struct.

“QTL-B VALUE“: If larger than a few percent, this indicates the appearance of ghost bands,
which are discussed below in section 12.1.
The few percent message (e.g up to 10 %) does not indicate a ghost band, but can happen
e.g. in narrow d-bands, where the linearization reaches its limits. In these cases one can
add a local orbital to improve the flexibility of the basis set. (Put one energy near the top
and the other near the bottom of the valence band, see section 7.6.3).

FERMI LEVEL not converged (or similar messages). This can have several reasons: i) Try a
different Fermi-Method (change TETRA to GAUSS or TEMP in case.in2). ii) Count
the number of eigenvalues in case.output1 and compare it with the number of va-
lence electrons. If there are too few eigenvalues, either increase EMAX in case.klist
(from 1.5 to e.g. 2.5) or check if your scf cycle had large charge oszillations (see SELECT
error above)

If the SCF cycle stops somewhere (especially in the first few iterations), it is quite possible, that
the source of the error is actually in a previous part of the cycle or even in a previous (e.g. the
zeroth) iteration. Check in the case.scf file previous charges, eigenvalues, . . . whether they are
physically reasonable (see SELECT error above).

12.1 Ghost bands

Approximate linear dependence of the basis set or the linearization of the energy dependence of
the radial wave functions (see section 2.2) can lead to spurious eigenvalues, termed “ghost bands”.
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The first case may occur in a system which has atoms with very different atomic sphere radii.
Suppose you calculate a hydroxide with very short O-H bonds so that you select small RMT radii
for O and H such as e.g. 1.0 and 0.6 a.u., respectively. The cation may be large and thus you
could choose a large RMT of e.g. 2.4 a.u. However, this gives a four time larger effective RKmax
for the cation than for H, (e.g. 16.0 when you select RKmax=4.0 in case.in1). This enormous
difference in the convergence may lead to unphysical eigenvalues. In such cases choose lmax=12
in case.in1 (in order to get a very good re-expansion of the plane waves) and reduce RMT for
the cation to e.g. 1.8 a.u.

The second case can occur when you don’t use a proper set of local orbitals. In this situation the
energy region of interest (valence bands) falls about midway between two states with different
principle quantum numbers, but with the same l-value (for one atom).

Take for example Ti with its 3p states being occupied as (semi-core) states, while the 4p states remain
mostly unoccupied. In the valence band region neither of those two states (Ti 3p, 4p) should appear.
If one uses 0.2 Ry for the expansion energy E(1) for the p states of Ti, then Ti-p states do appear as
ghost bands. Such a run is shown below for TiO2 (rutile).

The lowest six eigenvalues at GAMMA fall between about -1.30 and -1.28 Ry. They are ghost bands
derived from fictitious Ti-p states. The next four eigenvalues between -0.94 and -0.78 Ry correspond
to states derived from O 2s states, which are ok, since there are four O’s per unit cell, four states
are found.

The occurrence of such unphysical (indeed, unchemical!) ghostbands is the first warning that
something went wrong. A more definite warning comes upon running LAPW2, where the corre-
sponding charge densities are calculated. If the contribution to the charge density from the energy
derivative of the basis function [the Blm coefficient in equ. 2.4,2.7] is significant (i.e. much more
than 5 per cent) then a warning is issued in LAPW2.

In the present example it reads:

QTL-B VALUE .EQ. 40.35396 !!!!!!

This message is found in both the case.scf file and in case.output2.

When such a message appears, one can also look at the partial charges (QTL), which are printed
under these conditions to OUTPUT2, and always appear in the files case.helpXXX, etc., where
the last digit refers to the atomic index.

In the file below, note the E(1) energy parameter as well as the 6 ghost band energies around -1.29.

--------------- top of file:tio2.scf -----------------------------
ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM Titanium
OVERALL ENERGY PARAMETER IS .2000
E( 0)= .2000

---> E( 1)= .2000
E( 2)= .2000 E(BOTTOM)= -.140 E(TOP)= -200.000

ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM Oxygen
OVERALL ENERGY PARAMETER IS .2000
E( 0)= -.7100 E(BOTTOM)= -2.090 E(TOP)= .670

K= .00000 .00000 .00000 1
:RKM : MATRIX SIZE= 599 RKM= 6.99 WEIGHT= 8.00 PGR:

EIGENVALUES ARE:
-1.2970782 -1.2970782 -1.2948747 -1.2897193 -1.2897193
-1.2882306 -.9389111 -.8484857 -.7880729 -.7880729
-.0484830 -.0162982 .0121181 .0976534 .0976534
.1914068 .1914068 .2341991 .3286919 .3477629
.3477629 .3809219 .5143729 .5356211 .5550735
.5617155 .5617155 .7087550 .7197110 .8736991
.8736991 .9428865 .9533619 1.2224570 1.2224570
1.4285169

********************************************************
NUMBER OF K-POINTS: 1
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:NOE : NUMBER OF ELECTRONS = 48.000
:FER : F E R M I - ENERGY = .53562

:POS01: AT.NR. -1 POSITION = .00000 .00000 .00000 MULTIPLICITY= 2
LMMAX=10
LM= 0 0 2 0 2 2 4 0 4 2 4 4 6 0 6 2 6 4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

:CHA01: TOTAL CHARGE INSIDE SPHERE 1 = 8.802166
:PCS01: PARTIAL CHARGES SPHERE = 1 S,P,D,F,PX,PY,PZ,D-Z2,D-X2Y2,D-XY,D-XZ,D-YZ
:QTL01: .127 6.080 2.518 .067 2.011 2.047 2.022 1.090 .760 .155 .480 .034

VXX VYY VZZ UP TO R
:VZZ01: -4.96856 8.48379 -3.51524 2.000
:POS02: AT.NR. -2 POSITION = .30500 .30500 .00000 MULTIPLICITY= 4

LMMAX=16
LM= 0 0 1 0 2 0 2 2 3 0 3 2 4 0 4 2 4 4 5 0 5 2 5 4 6 0 6 2 6 4 6 6 0 0

:CHA02: TOTAL CHARGE INSIDE SPHERE 2 = 5.486185
:PCS02: PARTIAL CHARGES SPHERE = 2 S,P,D,F,PX,PY,PZ,D-Z2,D-X2Y2,D-XY,D-XZ,D-YZ
:QTL02: 1.559 3.902 .022 .002 1.296 1.306 1.300 .014 .004 .000 .003 .001

VXX VYY VZZ UP TO R
:VZZ02: .25199 -.55091 .29892 1.600

:CHA : TOTAL CHARGE INSIDE CELL = 48.000000
:SUM : SUM OF EIGENVALUES = -15.810906

QTL-B VALUE .EQ. 40.35396 !!!!!!
NBAND in QTL-file: 24

----------------end of truncated file tio2.scf----------------------

Next we show tio2.output2 for the first of the ghost bands at -1.297 Ry. One sees that it corre-
sponds mainly to a p-like charge, which originates from the energy derivative part Q(UE) of the
Kohn-Sham orbital. Q(UE) contributes 40.1% compared with 8.5% from the main component Q(U).
Q(UE) greater than Q(U) is a good indication for a ghost band.

----------------part of file tio2.output2 --------------------------
QTL-B VALUE .EQ. 40.35396 !!!!!!

K-POINT: .0000 .0000 .0000 599 36 1
BAND # 1 E= -1.29708 WEIGHT= 2.0000000

L= 0 L= 1 PX: PY: PZ: L= 2 DZ2: DX2Y2: DXY: DXZ: DYZ: L= 3
QINSID: .0000 48.6035 35.0996 13.5039 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0030
Q(U) : .0000 8.4902 6.0125 2.4777 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0026
Q(UE) : .0000 40.1132 29.0871 11.0261 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0005

L= 0 L= 1 PX: PY: PZ: L= 2 DZ2: DX2Y2: DXY: DXZ: DYZ: L= 3
QINSID: .1294 .0707 .0000 .0055 .0653 .0088 .0038 .0049 .0000 .0000 .0000 .0022
Q(U) : .1279 .0627 .0000 .0052 .0575 .0087 .0038 .0049 .0000 .0000 .0000 .0020
Q(UE) : .0016 .0081 .0000 .0003 .0077 .0001 .0000 .0000 .0000 .0000 .0000 .0002
QOUT : 1.9265

----------------------bottom of truncated file ----------------------

Another file in which the same information can be found is tio2.help031, since the ghost band
is caused by a bad choice for the Ti-p energy parameter:

----------------------Top of file tio2.help031 ---------------------
K-POINT: .0000 .0000 .0000 599 36 1
BAND # 1 E= -1.29708 WEIGHT= 2.0000000
L= 0 .00000 .00000 .00000 .00000 .00000 .00000
L= 1 48.60346 8.49022 40.11324 .00000 .00000 .00000

PX: 35.09960 6.01247 29.08712 .00000 .00000 .00000
PY: 13.50386 2.47774 11.02612 .00000 .00000 .00000
PZ: .00000 .00000 .00000 .00000 .00000 .00000

L= 2 .00000 .00000 .00000 .00000 .00000 .00000
DZ2: .00000 .00000 .00000 .00000 .00000 .00000

DX2Y2: .00000 .00000 .00000 .00000 .00000 .00000
DXY: .00000 .00000 .00000 .00000 .00000 .00000
DXZ: .00000 .00000 .00000 .00000 .00000 .00000
DYZ: .00000 .00000 .00000 .00000 .00000 .00000
L= 3 .00304 .00255 .00050 .00000 .00000 .00000
L= 4 .00000 .00000 .00000 .00000 .00000 .00000
L= 5 .00096 .00082 .00014 .00000 .00000 .00000
L= 6 .00000 .00000 .00000 .00000 .00000 .00000

-------------------bottom of truncated file--------------------------

Note again for L=1 the percentage of charge associated with the primary (APW) basis functions ul
(8.5%) versus that coming from the energy derivative component (40.1%).
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If a ghost band appears, one should first analyze its origin as indicated above, then use appropriate
local orbitals to improve the calculation and get rid of these unphysical states.

Do not perform calculations with “ghost-bands”, even when the calculation converges.

Good luck !
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A Local rotation matrices

Local rotation matrices are used to rotate the global coordinate system (given by the definition of
the Bravais matrix) to a local coordinate system for each atomic site. They are used in the program
for two reasons:

I to minimize the number of LM combinations in the lattice harmonics expansion (of potential
and charge density according to equ. 2.10). For example for point group mm2 one needs for
L=1 just LM=1,0 if the coordinate system is chosen such that the z-axis coincides with the
2-fold rotation axis, while in an arbitrary coordinate system the three terms 1,0; 1,1 and -1,1
are needed (and so on for higher L).

I The interpretation e.g. of the partial charges requires a proper orientation of the coordinate
system. In the example given above, the p orbitals split into 2 irreducible representations, but
they can be attributed to pz and px, py only if the z-axis is the 2-fold rotation axis.

It is of course possible to perform calculations without “local rotation matrices“, but in such a case
the LM combinations given in Table 7.57 (and by SYMMETRY) may not be correct. (The LM values
for arbitrary orientations may be obtained from a procedure described in Singh 94.)

Fortunately, the “local rotation matrices“ are usually fairly simple and are now automatically in-
serted into your case.struct file. Nevertheless we recommend to check them in order to be
sure.

The most common coordinate transformations are

I interchanging of two axes (e.g. x and z)
I rotation by 45◦ (e.g. in the xy-plane)
I rotation of z into the (111) direction

Inspection of the output of SYMMETRY tells you if the local rotation matrix is the unit matrix or it
gives you a clear indication how to find the proper matrix.

The local rotation matrix R , which transforms the global coordinates r to the rotated ones r′, is
defined by Rr = r′.

There are two simple ways to check the local rotation matrixes together with the selected LM com-
binations:

I charge density plots generated with LAPW5 must be continuous across the atomic sphere
boundary (especially valence or difference density plots are very sensitive, see 8.14)

I Perform a run of LAPW1 and LAPW2 using the GAMMA-point only (or a complete star of
another k point). In such a case, “wrong“ LM combinations must vanish. Note that the latter
is true only in this case. For a k mesh in the IBZ “wrong“ LM combinations do not vanish
and thus must be omitted!!

A first example for “local rotation matrices“ is given for the rutile TiO2, which has already been
described as an example in section 10.3. Also two other examples will be given (see below).
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A.1 Rutile (TiO2)

Examine the output from symmetry. It should be obvious that you need local rotation matrices for
both, Ti and O:

....
Titanium operation # 1 1
Titanium operation # 2 -1
Titanium operation # 5 2 || z
Titanium operation # 6 m n z
Titanium operation # 12 m n 110
Titanium operation # 13 m n -110
Titanium operation # 18 2 || 110
Titanium operation # 19 2 || -110

pointgroup is mmm (neg. iatnr!!)
axes should be: m n z, m n y, m n x

This output tells you, that for Ti a mirror plan normal to z is present, but the mirror planes normal
to x and y are missing. Instead, they are normal to the (110) plane and thus you need to rotate x, y
by 45◦ around the z axis. (The required choice of the coordinate system for mmm symmetry is also
given in Table 7.57)

....
Oxygen operation # 1 1
Oxygen operation # 6 m n z
Oxygen operation # 13 m n -110
Oxygen operation # 18 2 || 110

pointgroup is mm2 (neg. iatnr!!)
axes should be: 2 || z, m n y

For O the 2-fold symmetry axes points into the (110) direction instead of z. The appropriate rotation
matrices for Ti and O are: 1√

2
1√
2

0
−1√
2

1√
2

0

0 0 1

  0 −1√
2

1√
2

0 1√
2

1√
2

1 0 0



A.2 Si Γ-phonon

Si possesses a face-centered cubic structure with two equivalent atoms per unit cell, at (±0.125,
±0.125, ±0.125). The site symmetry is -43m. For the Γ-phnon the two atoms are displaced in
opposite direction along the (111) direction and cubic symmetry is lost. The output of SYMMETRY
gives the following information:

Si operation # 1 1
Si operation # 13 m n -110
Si operation # 16 m n -101
Si operation # 17 m n 0-11
Si operation # 24 3 || 111
Si operation # 38 3 || 111

pointgroup is 3m (neg. iatnr!!)
axis should be: 3 || z, m n y

lm: 0 0 1 0 2 0 3 0 3 3 4 0 4 3 5 0 5 3 6 0 6 3 6
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Therefore the required local rotation matrix should rotate z into the (111) direction and thus the
matrix in the “struct“ file should be:

0.4082483 -.7071068 0.5773503
√
6
6 −

√
2
2

√
3
3

0.4082483 0.7071068 0.5773503
√
6
6

√
2
2

√
3
3

-.8164966 0.0000000 0.5773503 −2
√
6
6

√
2
2

√
3
3

A.3 Trigonal Selenium

Selenium possesses space group P3121 with the following struct file:

H LATTICE,NONEQUIV.ATOMS: 1
MODE OF CALC=RELA POINTGROUP:32
8.2500000 8.2500000 9.369000
ATOM= -1: X= .7746000 Y= .7746000 Z= 0.0000000

MULT= 3 ISPLIT= 8
ATOM= -1: X= .2254000 Y= .0000000 Z= 0.3333333
ATOM= -1: X= .0000000 Y= .2254000 Z= 0.6666667
Se NPT= 381 R0=.000100000 RMT=2.100000000 Z:34.0
LOCAL ROT.MATRIX: 0.0 0.5000000 0.8660254

0.0000000 -.8660254 0.5000000
1.0000000 0.0000000 0.0

6 IORD OF GROUP G0
......

The output of SYMMETRY reads:

Se operation # 1 1
Se operation # 9 2 $|$$|$ 110
pointgroup is 2 (neg. iatnr!!)
axis should be: 2 || z

lm: 0 0 1 0 2 0 2 2 -2 2 3 0 3 2 -3 2 4 0 4 2 -4 2 ......

Point group 2 should have its 2-fold rotation axis along z, so the local rotation matrix can be con-
structed in two steps: firstly interchange x and z (that leads to z ‖ (011) ) and secondly rotate from
(011) into (001) (see the struct file given above). Since this is a hexagonal lattice, SYMMETRY uses
the hexagonal axes, but the local rotation matrix must be given in cartesian coordinates.
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[Klimeš et al., 2010] Klimeš, J., Bowler, D. R., and Michaelides, A.
(2010). J. Phys.: Condens. Matter, 22:022201. 65, 136, 138
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